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Abstract

Friction and contact pose a great challenge to efficient and accurate simu-

lation of deformable objects for computer graphics and engineering applica-

tions. In contrast to many engineering applications, simulation software for

graphics often permits larger approximation errors in favour of better pre-

dictability, controllability and efficiency. This dissertation explores modern

methods for frictional contact resolution in computer graphics. In particular,

the focus is on offline simulation of smooth elastic objects subject to contact

with other elastic solids and cloth. We explore traditional non-smooth fric-

tion formulations as well as smoothed frictional contact, which lends itself

well to differentiable simulation and analysis. We then explore a particular

application of differentiable simulation to motivate the direction of research.

In graphics, even smooth objects are typically approximated using piece-

wise linear polyhedra, which exhibit sliding artifacts that can be interpreted

as artificial friction making simulations less predictable. We develop a tech-

nique for improving fidelity of sliding contact between smooth objects.

Frictional contacts are traditionally resolved using non-smooth models,

which are complex to analyse and difficult to compute to a desirable error es-

timate. We propose a unified description of the equations of motion subject

to frictional contacts using a smooth model that converges to an accurate

friction response. We further analyse the implications of this formulation

and compare our results to state-of-the-art methods.

The smooth model uniquely resolves frictional contacts, while also being

fully differentiable. This allows inverse problems using our formulation to

be solved by gradient-based methods. We begin our exploration of differ-
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entiable simulation applications with a parameter estimation task. Elastic

parameters are estimated for a three distinct cloth materials using a novel

capture, registration and estimation pipeline. Static equilibrium cloth con-

figurations are efficiently estimated using a popular compliant constraint

dynamics. In this work we address a common issue of bifurcation in cloth,

which causes final configuration mismatches during estimation. Finally, we

postulate an extension to compliant constraint dynamics using our friction

model, to show how our previous work can be used in parameter estimation

tasks involving contact and friction.
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Lay Summary

The simulation of frictional contact between deformable elastic objects is a

challenging problem in computer graphics. This dissertation explores mod-

ern methods for simulating soft objects subject to friction and contact forces.

In particular, we focus on high fidelity simulation results used in visual ef-

fects, animation and fabrication applications. In contrast to many engineer-

ing applications, graphics permits larger approximation errors in favour of

improved visual fidelity. In practice, this means that methods applied in

graphics can be vastly different from methods in other domains. The spe-

cific methods explored enable further development of applications capable

of automatically reproducing real-life behaviour in simulation. We present a

pipeline for reproducing elastic behaviour of cloth to demonstrate one such

application.
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Chapter 1

Introduction

Frictional contact is a prevalent phenomenon in the real world. It is re-

sponsible for a vast variety of behaviours exhibited by interacting objects.

Frictional contact enables us to hold objects in our hands, to move while

walking, to wear clothes made from threads held together by friction, and

put topspin on a ball in racket sports. This makes friction and contact a

particularly important research topic in computer graphics. However, sim-

ulating frictional contact remains challenging despite more than 30 years

of research in computer graphics, and more than 300 years of research in

physics and engineering.

Virtual representation of real world objects is fundamental in computer

graphics. It involves many areas of research including visual rendering, ani-

mation and simulation. Rendering is responsible for how virtual things look.

This is dictated by the interaction between light, materials and ultimately

our eyes. Animation deals with how objects move. This often involves var-

ious tools and automations that allow one to control complex objects such

as a human body in 3D. Finally, simulation addresses how objects behave

and interact with one another in the virtual world. Graphics research has

made great strides in advancing rendering and animation technology, mak-

ing virtual worlds appear, at times, indistinguishable from reality. However,

what often betrays virtual reality most, is the behaviour of objects we are

most familiar with, and their mutual interaction. For instance, consider a
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simple scenario depicted in Figure 1.1, where a hand grasps a whiskey glass

between the thumb and finger. Visually, we expect to see the finger patch

deform along the surface of the glass as it is lifted. When violated, any one

of those phenomena will break the illusion of reality we seek. Although the

motion in the scenario in question can be handcrafted with animation tools,

it is impractical for high fidelity visuals. Physically-based simulation allows

one to mimic reality automatically, which enables highly complex visuals.

This dissertation deals with physically-based simulation of soft objects

and their interaction with one another. Specifically, we focus on simulating

dynamics of hyperelastic objects subject to frictional contacts. Objects of

interest are first discretized in space using the finite element method (FEM)

and then in time using an appropriate time integration scheme. For cloth

simulation, we also present a method for automatically determining sim-

ulation parameters from real-world captures, which further improves the

effectiveness of simulation to represent real clothing.

Figure 1.1: A rigid whiskey glass is pinched between the index finger
and thumb of an animated hand model and lifted. The first
frame shows the internal geometry of the distal phalanges whose
vertices drive the fingertips of the tetrahedral simulation mesh of
the hand. The remaining hand bones and tendons (not shown)
are used to determine other interior animated vertices. The
following frames show a selection of frames from the resulting
simulation showing the grasp, lift and hold of the glass. The
last image shows a photo of a similar scenario for reference.
The collision surface of the hand is represented by an implicit
function approximating a smoothed distance potential, while
the glass surface is sampled using discrete points. Our method
produces realistic deformation at the point of contact between
the fingers and the rigid object.
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1.1 Overview

Frictional behaviour in simulation can be modelled using traditional non-

smooth models like Coulomb friction, or smoothed models where some im-

perceptible slip is tolerated. Non-smooth models aim to find accurate stick-

ing dynamics with no slip, although they require complex non-smooth meth-

ods with weak convergence guarantees or time-splitting techniques with in-

flexible discretization requirements. In contrast, smooth models allow some

slip error, which can be limited with an explicit velocity tolerance. The two

main benefits of smooth models are that they can be solved using methods

with strong convergence guarantees and they allow differentiability of the

entire simulation system. Differentiability makes simulators attractive tools

for solving inverse problems where derivative-based methods can be used.

In Chapter 3 we address a common issue in contact handling of smooth

objects discretized using piecewise linear surfaces. In effect, under different

levels of discretization, piecewise linear contact surfaces exhibit distinct and

unpredictable frictional sliding behaviour. We address this by resolving con-

tacts against a smooth implicit surface. We show that this method enables

consistent sliding behaviour under mesh refinement, since surfaces remain

smooth under any resolution. A popular non-smooth friction method is then

extended and applied to the new contact model. Friction behaviour is then

verified using analytic results.

Chapter 4 digs deeper into accurate friction modelling. Here we address

a known drawback of smooth friction models – accuracy. By expressing elas-

todynamics and frictional contact as a single system of equations, we allow

friction to be integrated implicitly along with associated tangential trans-

forms, which enable accurate friction responses on curved surfaces. This

also allows us to analyse the friction problem in the context of elastodynam-

ics more effectively. With this model we unlock the ability to easily apply

higher-order time-integration schemes, where previous methods fail to do

so.

In Chapter 5, we explore an application of differentiable simulation. In

particular, we build a cloth parameter estimation pipeline for capturing real

3



world cloth deformation, registering simulation meshes to acquired captures

and estimating the required material properties for a simulator to reproduce

the desired result. This system forms a tool for automatically determining

simulator parameters without the need for arduous manual parameter tun-

ing. For gathering high resolution cloth wrinkle data, we use a fast compli-

ant dynamics simulator to quickly determine equilibrium configurations. We

further show how the chosen simulator can be extended with our frictional

contact model, which would allow for estimating dynamic parameters like

damping and friction.
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Chapter 2

Background

In this chapter we establish the context for describing the simulation of

hyperelastic objects subject to frictional contact. Namely, we specify the

spatial discretization used to simulate elastodynamics problems. We then

define all of the involved forces and specify the mechanism for applying

traction and contact forces to the system. Finally we summarize the time

discretization methods used to discretize the resulting system of ordinary

differential equations (ODEs). This sets a common set of definitions and

concepts to use throughout the remainder of the dissertation.

2.1 Generalized coordinates

Consider a system of solids represented with m generalized coordinates

q(t) ∈ Rm with generalized velocities v(t) := q̇(t) ∈ Rm at some time

t ∈ R. The generalized mass, denoted by M, is a constant sparse symmet-

ric positive definite (SPD) m × m matrix. Generalized coordinates serve

as an abstraction for a discrete space of coordinates that uniquely identify

the configuration of a system of solid bodies. This lets us describe dynam-

ics for soft solids or cloth where q can represent vertex positions, reduced

coordinate systems or systems of rigid bodies.

In this work, we focus solely on dynamics of soft solids and cloth, which

are represented by vertices connected by tetrahedra and triangles. This
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means m = 3n where n is the number of vertices and q and v are sim-

ply stacked vectors of vertex positions and velocities respectively. However,

contact surfaces are represented using a different mechanism, which is in-

troduced in Chapter 3.

2.2 Equations of Motion

It is not uncommon to begin with a variational principle to derive equa-

tions of motion for a dynamical system. Using this method one may lead

to sophisticated variational time integrators with desirable properties like

momentum and energy preservation, even in the presence of contacts [67]

and friction [66]. However, we instead start directly with the equations of

motion to maintain flexibility in the choice of time integration schemes.

The equations of motion for a non-conservative dynamical system can

be written in configuration space as

M
dv

dt
= f(t,q,v), (2.1)

where f(t,q,v) ∈ Rm is the total generalized force. To illustrate the full

complexity of solving dynamics in the graphics pipeline, we decompose the

total force into all possible components, which can often require different

integration schemes:

f(t,q,u) = fg(t) + fd(q(t),u(t)) + f e(q(t)) + f c(q(t)) + ff (q(t),u(t)),

(2.2)

where fg is the uniform external force (e.g. gravity), f e gives the conservative

elastic force, fd is a dissipative (damping) force, f c is the contact force and

ff gives the friction force. In the remaining sections, we omit the time

parameter for brevity.
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2.3 Elasticity and Damping

Elastic forces are typically derived from a configuration dependent energy

potential W (q) as

f e(q) = −
∂

∂q
W (q)

The elastic potential W can be defined by the classic linear, neo-Hookean,

St. Venant-Kirchhoff (StVK) or Mooney-Rivlin models [33], or even a data

driven model [142]. Here, we focus on neo-Hookean materials for both solids

and cloth. The stiffness matrix K(q) = − ∂
∂q f e(q) dictates how resistant an

object is to deformation. For nonlinear models like neo-Hookean elasticity,K

may be indefinite, which is important to know when picking an appropriate

solver.

Damping forces are often defined by

fd(q,v) = −D(q)v

where D is square symmetric matrix that may be indefinite. A common

choice for D is the Rayleigh damping model [120] where D = αM + βK

for some constants α, β ≥ 0. There are also more sophisticated models that

improve the damping behaviour for nonlinear elasticity [93]. An accurate

damping model is important for lively dynamic animations, however further

discussion falls outside the scope of this dissertation.

2.4 Contact mechanics

Contacts occur between two points on two distinct surfaces. In this work we

focus specifically on point contacts, where force and velocity quantities are

defined at localized points in space where individual contacts occur. Thus,

the first thing we require is a mapping between the configuration space and

the space where individual contacts occur, which may not coincide with

vertex positions. We define the contact Jacobian of a point i on a solid in
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contact with a fixed external point as

Jc,i :=
∂xi

∂q
, (2.3)

which maps configuration velocities to velocities in physical Euclidean space

at the point of contact:

vi := ẋi = Jc,iv. (2.4)

Similarly, forces in physical space can be mapped into the configuration

space. Suppose fi is a force at the point i on a solid in physical space, then

from the principle of virtual work, J⊤
c,ifi corresponds to the same force in

configuration space.

This is sufficient to model contacts with objects outside the system gov-

erned by q; however for internal contacts extra care is required. Suppose

contact i occurs between points a and b on two distinct surfaces (possibly

belonging to the same object). Then the relative velocity between the two

points is given by

v̄i = va − vb = (Jc,a − Jc,b)v.

In this scenario, by Newton’s third law, the force impulse on point a is

equal in magnitude and opposite in direction to the force on point b:

fa = −fb.

Then the frictional contact force on the whole system can be written as

J⊤
c,afa + J⊤

c,bfb = (Jc,a − Jc,b)
⊤fa.

This produces a global contact Jacobian matrix Jc consisting of triplets

of rows for each contact between points a and b defined by Jc,a−Jc,b. Thus

Jc is a 3n×m matrix where n is the total number of contacts.

We can now write the combined frictional contact force f fc = ff + f c in
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terms of the stacked forces in physical space as J⊤
c ffc .

As we move our focus towards time discretization, it is important to

remember that Jc is a function of q, which is time dependent.

2.5 Time integration

Here we introduce a variety of implicit time integration methods for dis-

cretizing Eq. (2.1) in time. Purely explicit integration schemes are omitted

since they prohibitively restrict the admissible time step size in stiff problems

— contact and friction can produce extremely large forces causing instability

that is intrinsic to the problem we are trying to solve.

Using standard notation, we assume that at time t we know q = qt and

v = vt and employ a step size h to proceed forward in time. The integration

methods we consider can be expressed by the momentum balance equation

0 = r(vt+h;h, f ,M), (2.5)

where we use superscripts to indicate time. Each integration scheme is

characterized by one or more residual functions r used to determine the final

velocity vt+h. Except for trapezoidal rule, all integrators we consider are

L-stable, indicating that they dampen errors for stiff and highly oscillatory

or unstable problems. Our smooth problem formulation can be unstable

(see Section 4.5.2), however, we know that frictional contact is naturally

dissipative, and so we expect solutions to behave stably. L-stability ensures

that any additional stiffness present in the system will not destabilize the

numerical solution. For further discussion on stability see [12].

2.5.1 Backward Euler

The simplest implicit scheme is backward Euler (BE), which is typically

defined by

rBE(v
t+h) = M(vt+h − vt)− hf(qt + hvt+h,vt+h) = 0. (2.6)
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This integrator is popular in computer graphics due to its supreme stability,

however it suffers from time-step dependent numerical dissipation, which can

make simulations unpredictable and highly dynamic simulations impractical.

2.5.2 Backward differentiation formula

Backward differentiation formula (BDF) is a family of integration schemes

aimed at solving initial value ODEs of the form u̇ = f(u). In general, it can

be written as

s∑
k=0

aku
t+h(k−s+1) = hβf(ut+h)

where the coefficients ak and β are chosen so that the method achieves order

s. A unique integrator of order s is named BDFs, where BDF1 for instance

is backward Euler. We are particularly interested in BDF2, where a0 = 1/3,

a1 = 4/3, a2 = 1 and β = 2/3, which yields

rBDF2(v
t+h) = M

(
vt+h − 4

3
vt +

1

3
vt−h

)
− 2

3
hf(qt+h,vt+h) = 0

where qt+h =
4

3
qt − 1

3
qt−h +

2

3
hvt+h.

This scheme has substantially better energy conservation properties when

compared to BE, however it still suffers from time-step dependent numeri-

cal dissipation though to a lesser extent. Furthermore, unlike Runge-Kutta

described below, BDF2 is a two-step method, which requires higher smooth-

ness from the global solution.
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2.5.3 Trapezoidal rule

A well known method for mixing explicitly and implicitly determined forces

on the system is the trapezoid rule (TR). We define the TR residual by

rTR(v
t+h) = M(vt+h − vt)− h

2

(
f(qt,vt) + f(qt+h,vt+h)

)
= 0

where qt+h = qt +
h

2

(
vt + vt+h

)
. (2.7)

Notably, this method is equivalent to the most commonly used implicit

Newmark-β [53, 63, 108] method with β = 1/4 and γ = 1/2. The frictional

contact problem we address in Chapter 4 is not stable, and can generate large

stiffnesses for high elastic moduli, large deformations or due to contact and

friction. The smoothed frictional contact problem produces high frequency

oscillations, which are exacerbated by TR, whereas ideally we want these

to be damped away. See Section 4.5.2 for a concrete example. In spite

of these flaws, TR is still used in practice, and often decoupled from the

frictional contact problem [84]. In Section 4.6.1 we demonstrate how a

properly coupled TR as defined in Eq. (2.7) can resolve some instabilities

in practice. Fortunately, these issues disappear when a method with more

numerical dissipation is interleaved with TR.

2.5.4 TR-BDF2

The two aforementioned methods can be interleaved producing a second

order two stage method over one step from t to t+ h. The method consists

of solving the TR equation for a half step followed by a half BDF2 step.

This method is known to be L-stable [13].

2.5.5 Singly diagonal implicit Runge-Kutta

Increasingly popular [92] is the singly diagonally implicit Runge-Kutta

(SDIRK) family of methods categorized by the lower triangular structure

of the corresponding Butcher tableau [9]. We are specifically interested in

the two stage second order method, which we will refer to as SDIRK2. This

method can be expressed in two stages. The first stage is BE applied for a
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time step αh where α = 1− 1/
√
2, and the second can be written as

rSDIRK2(v
t+h) = M(vt+h − vt)

− h
(
(1− α)f(qt+αh,vt+αh) + αf(qt+h,vt+h)

)
= 0

where qt+h = qt + h
(
(1− α)vt+αh + αvt+h

)
Incidentally, it is not difficult to show that if f is linear, then SDIRK2 is

equivalent to TR-BDF2 where the initial TR step is larger than 1/2. The

numerical dissipation properties of SDIRK2 and TR-BDF2 are generally

expected to be similar [13].

2.5.6 Summary

Here we have shown how to apply some of the more complex integrators

to our system. Although many scenarios are highly dissipative, where BE

is an adequate scheme, many cases require more lively animation to appear

physical, for instance when simulating ball sports or interacting stiff objects.

Such cases require stable higher-order time integration techniques with good

dissipative properties, which we have shown can be easily applied in our

framework. However, the specific visual phenomena unlocked related to

friction in these cases remains to be investigated.
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Chapter 3

Frictional contact on smooth

elastic solids

3.1 Introduction

Two major issues plague frictional contact research. The first is that the

laws governing macroscopic frictional contact behaviour are non-smooth.

They require integrating smooth differential equations with strict inequality

constraints due to contact and friction, leading to non-smooth jumps in

forces and velocities. The second issue is precisely the coupling between

forces and velocities at the point of contact that precludes a straightforward

formulation of the frictional contact problem as energy minimization [40].

Non-smoothness has been a major focus of previous research. Following

the seminal work of Moreau [105] there has been a substantial amount of

progress towards understanding this aspect of frictional contact. Unsurpris-

ingly, this topic has motivated the foundations of convex and variational

analysis [121]. It is now well understood that non-smoothness is necessary

for modelling absolute sticking behaviour in finite time.

Practical methods for applying friction forces involve “linearizing the

friction cone”, or discretizing the space of admissible friction forces, which

creates artificial anisotropy in friction responses. Although these methods

are efficient, they are known to be inaccurate. In this work we propose
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a simple and efficient solution to computing isotropically accurate friction

forces.

Frictional forces are also sensitive to non-smoothness in the representing

geometry. While commonly used polygonal surfaces are convenient when

simulating deformable or rigid objects, they can be problematic when used

for frictional contact resolution. In particular, their piecewise linear nature

makes frictional contact solutions highly dependent on resolution. Low reso-

lution meshes can cause unwanted artifacts when used to represent otherwise

smooth objects.

We address this problem by using a smooth implicit surface for repre-

senting the collision geometry. In contrast to other parametric representa-

tions of smooth surfaces (e.g., subdivision or non-uniform rational B-spline

(NURBS) surfaces), implicit representations provide a natural way to define

the contact problem via inequality constraints. Since our surface is smooth,

this works reliably with gradient based solvers. In contrast, popular contact

formulations using distance functions to piecewise linear surfaces require

additional smoothing or specialized non-smooth solvers.

It has been established that in general friction and contact are not inde-

pendent forces. Given a sufficiently stiff dynamical system, a contact point

is in equilibrium (has zero relative velocity) when generalized friction and

contact forces are exactly balanced [47, 69, 117]. This implies that an ac-

curate method for resolving frictional contacts advances the system along a

velocity field that balances friction and contact simultaneously at each time

step. This observation implies that friction and contact forces must be in-

tegrated implicitly with respect to the assumed velocity field. This ensures

accurate stopping behaviour at the end of each time step [21].

In this chapter we develop a non-smooth method for resolving frictional

contacts between objects with intrinsically smooth surfaces (meaning sur-

faces with no or few sharp edges or corners). In summary, the main contri-

butions proposed in this chapter are:

• An implicit surface representation for modelling deformable solids.

This approach admits a simple formulation for resolving non-linear
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contact using non-penetration constraints without the need for so-

phisticated collision detection schemes.

• An algorithm for resolving non-linear frictional contact on implicit

surfaces. Without having to linearize the friction cone at each point

of contact, we are able to produce high fidelity frictional contact re-

sponses that are suitable for modelling real world contact problems.

• An enhanced time-splitting mechanism that propagates friction im-

pulses into the constrained elasticity solve, while resolving contacts

exactly. This permits using larger time steps in simulation with fine

grained meshes.

In the following section we give a more comprehensive review of related

works. Section 3.3 establishes the specific formulation of the problem. Sec-

tion 3.4 describes of our implicit surface model. Our specific friction model

is then Section 3.5.3. The results are presented in Section 3.6 and followed

by a summary of limitations and concluding statements in Section 3.7.

3.2 Related work

Simulation of realistic elastic objects subject to frictional contacts received

much attention from the computer graphics community over decades. A

number of approaches have been explored for modelling, animating and sim-

ulating the physics of rigid and elastic solids, flexible shells like cloth and

deformable rods like hair. Some methods employ particles to represent the

deformable media, from smoothed particle hydrodynamics (SPH) [19] to ma-

terial point methods (MPM) [56, 58] with full frictional contact formulations

as well as position based dynamics (PBD) [107] and its generalizations like

projective dynamics [24] and quasi-Newton methods [88]. The most popular

method for simulating elastic bodies — perhaps due to the sheer volume of

available literature — remains FEM. Some methods employ discontinuous

discretizations [45, 71] while others rely on continuously linked meshes [126]

to represent deformable media. The latter, being the most popular, is the

discretization we choose, although our contact formulation does not limit
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us to a particular style of discretization since we require only a sampling of

points and normals to produce a contact surface.

Smooth contact has previously been explored in the context of rigid-

bodies [17, 76] using parametric surfaces. Smoothness becomes even more

critical when the contacting bodies are allowed to deform and slide against

each other. We chose to represent the contacting surface using an implicit

surface formulation to leverage the intrinsic potential surrounding such a

surface for anticipating potential contacts.

3.2.1 Implicit surfaces

Implicit surfaces have been widely used to represent 3D geometry in lit-

erature. From modelling and animation [135, 137] to simulating contact

between deformable solids. A popular Eulerian method for using implicit

surfaces for deformable media was introduced by Osher et al. [114]. This

method is often augmented with particles for improving surface tracking,

especially in rapidly deforming media with many topology changes like flu-

ids [46]. Lagrangian variations also exist [61]. In contrast, we rely on FEM

to compute elasticity and dynamics equations, while using the implicit sur-

face solely for contact resolution and friction. Implicit functions have been

widely used in computer graphics for resolving contact between soft bodies.

Desbrun and Cani [28, 29, 41], developed a series of methods for resolving

contacts between soft solids represented by radial functions defined around

skeletal structures. These methods have very compact data representations

and are very efficient, which makes them appropriate for real-time animation

applications. However, they require extensive parameter tuning and gener-

ally lack the high fidelity deformation we seek here. Later, McAdams et al.

[102] proposed a collision detection scheme using signed distance functions

for representing collision geometry. This method was further extended to

handle cloth collisions [97], which can likewise be applied in our formulation.

Our formulation defers from [102] in that we do not require an embedded

method for resolving collisions in material space, and unlike the signed dis-

tance function, our implicit surface is smooth, which improves solver conver-
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gence. Vaillant et al. [136, 137] used Hermite radial basis functions (HRBF)

to improve skinning. HRBFs employ a collection of points with normals to

reconstruct the sampled surface, however it relies on a global solve includ-

ing all involved sample points. Implicit functions have been widely used

in surface reconstruction. Particularly the siminal work of Alexa et al. [8]

popularized the moving least squares (MLS) methodology for surface re-

construction in computer graphics [32]. MLS uses an implicit surface to

approximate geometry, similarly involving all points per query, however no

global linear solve is required. MLS has difficulties representing sharp fea-

tures [110]. Interestingly, this is a feature when it comes to formulating

contact constraints, since smooth boundaries yield better convergence in

constrained optimization involving constraint derivatives. Indeed, methods

using distance functions for collision detection are often forced to explicitly

smooth the constraint function [84]. This motivates our use of an inherently

smooth, local MLS contact surface representation not unlike existing surface

reconstruction methods [3].

3.2.2 Frictional contact

We review numerical methods for resolving frictional contacts in the gen-

eral case of rigid or deformable solids. We are particularly interested in

the trade-offs between accuracy, simplicity and scalability. At a high level,

frictional contact methods can be grouped into penalty-based methods, and

constraint-based methods.

The idea behind penalty-based contact handling is that of applying a

restorative force between colliding objects in the direction that resolves the

collision. Typically objects are allowed to intersect during simulation at

which point the restorative penalty force is applied as a function of the

amount of interpenetration [74, 104] to emulate elasticity. This method is

particularly efficient and hence popular in real-time computer graphics. Ad-

ditionally, penalty-based methods are simple and allow various interacting

physical systems to be solved by completely different software packages. As

such, these methods are also popular in offline animation and visual effects

17



tools like Houdini [125], which uses penalties to model contact between var-

ious hair, cloth, rigid body and FEM solvers. Unfortunately, this method

suffers from stiffness and stability issues, and often requires complex post-

processing steps to resolve infeasible configurations. Penalties with low stiff-

ness coefficients can often fail to resolve interpenetrations, however higher

stiffnesses may require very small time steps to accurately resolve collisions

[16].

Friction can also be modelled via an applied viscous force proportional

to tangential predictor velocity between touching surfaces. This approach

is especially useful for resolving friction within deformable solids [18]. Un-

fortunately, viscosity based friction lacks the ability to model the biphasic

nature of dry friction.

Alternatively, instead of guessing what penalty forces would lead to a

collision free state (and with the correct friction behaviour), we may choose

the desired configuration directly [18, 107] or pick the exact forces that pro-

duce the target positions and/or velocities [129]. These methods are known

as explicit constraint-based since they impose explicit constraints on the con-

figuration space. Although this approach is very efficient, it poses problems

in the context of complex simultaneous collisions where no clear change in

velocity produces a collision free state. Furthermore, this technique is ill-

suited to more sophisticated domain discretizations like reduced coordinates

or implicit surfaces where contact points are not linear with respect to the

degrees of freedom.

Lastly, to circumvent the issues mentioned above, we may consider ve-

locity as unknown and solve for frictional contact simultaneously with dy-

namics. This is the only way of enforcing the desired conditions at the end of

each time step [21]. Solving for contact and Coulomb friction simultaneously

remains a challenging problem because it poses nonlinear and non-smooth

constraints on the overall problem. As a result, most methods in computer

graphics tend to approximate Coulomb friction rather than solving for it

exactly. For instance, Tresca-like methods model the sliding threshold as

independent of the normal force [90]. An artifact of this approximation is

that two solids with different weights will start sliding at the same time on
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an inclined surface. Kaufman et al. [68] proposed to use the normal compo-

nent of the reaction force without friction to determine tangential friction

force. This violates the coupling between the frictional forces and normal

forces as highlighted by the Painlevé Paradox [117]. Kaufman et al. [69]

then improved the technique by solving for tangential and normal compo-

nents of the frictional contact using staggered projections. This approach

lacks fidelity and reproducibility of certain behaviours since it requires a

linearization of the friction cone that imposes a discretization dependent

anisotropy on the sliding direction as noted by Acary and Brogliato [1].

Later, Bertails-Descoubes et al. [21] used the Alart-Curnier [7] formulation

for frictional contact to produce a non-smooth Newton-Raphson root find-

ing technique for hair friction. This was then extended by Daviet et al.

[39] to improve scalability using a Gauss-Seidel approach in conjunction

with an alternative, smoother Fischer-Burmeister formulation of frictional

contact. The work by Daviet et al. was subsequently used to further im-

prove efficiency with adaptive non-linearity [70]. Erleben [48] abstracted the

Alart-Curnier approach into a general proximal algorithm allowing for other

iterative methods and friction models such as Coulomb-Contensou. Li et al.

[83] extended these ideas to adaptive cloth simulation based on nodal con-

straints. Mazhar et al. [101] followed a slightly different direction to develop

an accelerated projected gradient descent method to solve rigid body dy-

namics subject to frictional contacts. Macklin et al. [96] produce an efficient

solver for resolving frictional contact between rigid and deformable objects

in interactive simulations. Verschoor and Jalba [139] extend the conjugate

residual method to resolve frictional contact simultaneously with elasticity.

Li et al. [84] and Geilinger et al. [52] followed a common practice in mechan-

ical engineering and relaxed the non-smooth Coulomb friction formulation

into a smooth approximation.

While recent developments have drastically improved the scalability, ac-

curacy and robustness of implicit frictional contact solutions, they rely on

highly customized solvers, which makes them difficult to generalize. In con-

trast to previous work, here we aim to develop a method that fits into exist-

ing simulation pipelines more easily. In this chapter, we aim to reuse existing
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optimization tools, thereby making implementation simpler and replicability

easier.

In the area of frictional contact, our work mainly focuses on fidelity and

method extensibility. For a thorough review of non-smooth methods for

dynamical problems we refer the reader to [1].

3.2.3 Friction models

An important aspect of numerical solutions for frictional contact is the fric-

tion model itself. By a wide margin the majority of the works mentioned

above assume the Coulomb friction model or similar. However, friction is

extremely difficult to model accurately even in simple scenarios, since the

physics causing this phenomenon can be vastly different. Friction models

can be split into two categories: static and dynamic [118]. Static models

assume that during stiction, there is zero relative motion between the con-

tacting bodies. In reality, a small amount of presliding displacement occurs,

which is handled by dynamic models.

Coulomb friction [37], depicted in Figure 3.1b, is one of the oldest static

models. It describes a phenomenon often referred to as dry friction, which

is arguably the most common type of friction we typically encounter in ev-

eryday life. Coulomb friction postulates that friction is proportional to the

normal load and opposite to the relative velocity of the contacting objects. A

common extension to Coulomb friction is the Stribeck model shown in Fig-

ure 3.1c, which was developed in the early 20th century by Richard Stribeck

and Mayo D. Hersey [60, 131, 132]. This model distinguishes static friction

from kinetic, and adds a viscosity term to model damping due to lubricated

contact. The static models have seen many adjustments [14, 75, 81, 140],

which primarily aim at providing smooth approximations to the non-smooth

friction models to improve and simplify the computational methods required

to resolve friction forces. A stepwise friction model can be easily smoothed

by the approximation sgn(x) ≈ 2
π arctan(ϵx) with approximation parameter

ϵ [140] as shown in Figure 3.1d.

Further advances in friction modelling were introduced by Dahl [38] in
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1968, which introduced a displacement dependency in presliding friction —

a small elastic force that pulls contacts together before they break apart.

The Dahl model has been extended to account for the Stribeck effect with

the LuGre model [30]. Hysteretic effects have also been handled in the Leu-

ven model [134]. Dynamic models typically propose to dynamically switch

between the stick phase and macroscopic sliding, which can be too complex

for many practical engineering purposes [145].

+
+

m
v

fN

f

(a) A mass m is sliding with velocity
v is subject to a friction force f and a
normal force fN. The force of gravity is
implied.

v

f

−fS

fK

(b) Coulomb friction. When the
mass is stationary, the object may ad-
mit a force of static friction in the range
[−fS , fS ]. A moving object, however is
subject to kinetic friction fK if v < 0 or
−fK if v > 0.

v

f

fv

(c) Stribeck model. Static friction
smoothly transitions into kinetic, which
is positively dependent on relative ve-
locity. For larger velocities, friction
force can increase linearly with velocity
as determined by the slope fv.

v

f

(d) Smoothed Stribeck model. This
model smoothes the Stribeck model at
v = 0, by using the approximation
2
π arctan(ϵv)

ϵ→∞−−−→ sgn(v).

Figure 3.1: A variety of friction curves are plotted with relative ve-
locity v on the horizontal axis and friction f on the vertical for
a scenario depicted in (a).
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Another important body of tribology research focuses on estimating the

magnitudes of kinetic and static friction coefficients, as well as analysing

their dependence on the load parameter. Indeed a general power law is

typically used to monitor this dependency where f = αfkN where k is called

load index. Many experiments measuring friction on human skin found

significant decrease in k when contacting surfaces are wetted [2] indicating

that a significant portion of the friction force is due to adhesion. Prior work

studying friction between skin and textiles concluded that

Moisture on the skin is more important than the fiber type or

the fabric construction parameters tested in these experiments

in determining fabric-to-skin friction.

- Kenins [73]

Other research studying textiles in isolation, found non-trivial friction forces

between textiles with a negligible amount of normal force [57]. These find-

ings generally support the idea that adhesion plays a significant role in

friction phenomena, especially on textiles or moist surfaces like human skin.

To the best of our knowledge, adhesion in frictional contact methods has

been largely unexplored in computer graphics. Mazhar et al. [101] formulate

a cohesive frictional contact model. Although their focus is on scalability

and performance, they take a step towards a more general contact model

allowing negative normal forces to produce sticking. Adhesion in friction,

however, is fundamentally different in that it relates the force of friction

to the area of contact between contacting surfaces. Originally Bowden and

Tabor [25] studied the friction between lubricated metals to find a two-

term non-interacting friction model. This model was later adapted more

generally for studying rolling friction for elastic lubricated surfaces [54], and

more recently friction between human skin [2] and smooth rigid solids.

While adhesion is not explored in this dissertation, related works are

included here for completeness, and we note that adhesion is a fruitful area

for future research in computer graphics.
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3.3 Formulation

In this section, we lay the groundwork for the algorithms introduced in this

chapter.

3.3.1 Nonlinear equations as an optimization problem

As discussed in Section 3.1, frictional contact must be resolved implicitly to

guarantee proper sticking behaviour. Here, we aim to develop an implicit

algorithm with particular attention to friction and contact.

External and dissipative forces other than friction are integrated explic-

itly and are omitted from our exposition for brevity. In this chapter we

use backward Euler time integration defined in Eq. (2.6). This scheme is

unconditionally stable, and simple enough to allow us to focus on modelling

contacts.

The nonlinear Eq. (2.5) with Eq. (2.6) form the necessary condition for

the minimum of

min
v

1

2

∥∥v − vt
∥∥2
M

+W (qt + hv) +Wfc(λ,v) (3.1)

where Wfc is some frictional contact potential parametrized by some λ such

that

f fc = −1

h

∂Wfc

∂v
.

Note that in general, f fc cannot be represented as a derivative of some

potential, but it can here, since λ is fixed. The mass induced norm is defined

by ∥z∥2M := z⊤Mz for all z ∈ Rm, andW (qt+hv) is the total implicit elastic

strain energy. The negative derivative of strain energy produces the desired

elastic forces

f e = −
∂W

∂q
.

We use the standard nonlinear neo-Hookean strain energy [126] or its stable

variation [128], although other choices also work. We haven’t yet defined

Wfc , however we have established that all implicit potentials and forces of

interest are effectively functions of the velocity v.
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This formulation is convenient because it can easily be extended to

include physical constraints forming a constrained optimization problem,

which is arguably more extensively studied than constrained ODE prob-

lems. Furthermore, local minima in (3.1) correspond to valid physical con-

figurations, whereas methods for solving nonlinear systems of equations have

weaker global convergence guarantees [109].

3.3.2 Time splitting

In this section we will briefly present the time splitting technique. Suppose

our momentum step is driven by some two implicit forces fa and f b as follows

vt+h = vt + hM−1
(
f t+h
a + f t+h

b

)
. (3.2)

We can split Eq. (3.2) by solving for the contributions of fa and f b separately:

v∗ = vt + hM−1f∗a, (3.3a)

vt+h = v∗ + hM−1f t+h
b , (3.3b)

This technique yields a first order integrator regardless of the accuracy in

each solve, which is often sufficient for graphics applications. Time splitting

is sometimes referred to as the predictor-corrector method [69] and is widely

used to separate elasticity and friction solves [21, 39, 48].

Furthermore, if we maintain that the forces can be derived from an

energy potential, then one or both of the Eqs. (3.3) can still be solved by an

optimization like in (3.1).

Our goal here is to develop a method for solving (3.1) for elastic solids

with boundaries represented by smooth implicit surfaces where f t+h
fc is con-

strained to satisfy friction conditions of a static friction model like Coulomb

friction.

Note that the frictional contact force f fc is unknown and (possibly non-

uniquely) determined by the configuration (q,v). Unfortunately, in general

f fc cannot be derived from a single energy potential, however it can be
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constructed from two coupled potentials [40]. In Section 3.5.3 we propose

an algorithm to solve for f t+h
fc by iteratively solving a split version of (3.1).

3.3.3 Force forwarding

To mitigate some of the artifacts introduced by time splitting, we propose

to forward the computed forces into the next time step. For instance, con-

tinuing with the example from the previous section, we observe that f t+h
b is

a known quantity at the end of the time step, which can be used to drive

the next time step as follows

v∗ = vt + hM−1
(
f∗a + f tb

)
, (3.4a)

vt+h = v∗ + hM−1
(
f t+h
b − f tb

)
. (3.4b)

This produces a slightly different intermediate velocity v∗ but is otherwise

equivalent to Eq. (3.3). This facilitates closer coupling between fa and f b

than the initial splitting in Eq. (3.3).

Alternatively, starting again with Eq. (3.3), we can reintroduce the pre-

dicted f∗a from the intermediate step back into the final step to ensure that

both fa and f b are solved implicitly for the end of the time step (for in-

stance this is necessary for friction and contact impulses to generate correct

sticking behaviour). This technique will then look like

v∗ = vt + hM−1f∗a, (3.5a)

vt+h = v∗ + hM−1
(
f t+h
b + f t+h

a − f∗a

)
, (3.5b)

This change reduces to the original implicit system in Eq. (3.2) simply by

eliminating v∗. Although solving Eq. (3.5a) and then immediately sub-

tracting the result in Eq. (3.5b) may seem redundant, it makes a difference

if fa is combined with another force in Eq. (3.5a), thus facilitating addi-

tional coupling between the two forces. To demonstrate this, we can apply

the techniques above to the elasticity and frictional contact forces f e and

f fc respectively. First, we split f e from f fc as in Eq. (3.3). Then after
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splitting frictional contact force into its friction and contact constituents:

f fc = f c + ff , we forward the friction force ff as in Eq. (3.4), and reintro-

duce the intermediate contact force f c into the final step as in Eq. (3.5).

The final system is given by

v∗ = vt +M−1
(
f∗e + f∗c + f tf

)
, (3.6a)

v∗∗ = v∗ −M−1
(
f∗c + f tf

)
, (3.6b)

vt+h = v∗∗ +M−1
(
f t+h
c + f t+h

f

)
, (3.6c)

which effectively couples f e with f c in Eq. (3.6a) and f c with ff in Eq. (3.6c).

This is precisely the splitting technique we apply to friction and contact

forces in Section 3.5.3, which we call friction forwarding. In the sections

to follow, we develop the necessary constraints on these forces, to solve the

frictional contact problem.

3.4 Implicit surfaces

Handling contact on smooth solids can be problematic when they are rep-

resented by polygons. For instance, artifacts can arise when two smooth

objects are sliding if contact is resolved on a per polygon basis, especially

with coarse resolutions as shown in Figure 3.2. Furthermore, non-smooth

discretizations limit the ways general purpose optimization solvers can be

applied for contact resolution. This forces the development of complex iter-

ative schemes for collision handling and resolution [21, 39, 83, 84]. For these

reasons we aim to design a surface representation that is ideal for smooth

frictional contact handling and resolution. In particular, we are looking for

the following properties:

• The surface is smooth and supports a surrounding potential field. This

enables using general purpose smooth non-linear optimizers that can

handle inequality constraints for contact resolution.

• This field must be differentiable with respect to deformation of the

solid in order to produce smooth sliding during deformation.
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Figure 3.2: Smooth sliding on implicit surface. A piece of cloth is
draped off-center onto a rigid cylinder. It then slips to the
side as captured by this illustration. A vertex (circled) on the
cloth in both examples is selected and traced from its original
position as it slides along the surface of the cylinder. On the left,
a polyhedral surface is used to represent the cylinder’s contact
surface, which produces an irregular contact pattern that causes
unwanted vibrations in the cloth. In contrast, a smooth contact
surface is used on the right, which produces a more natural
smooth trajectory for a sliding vertex.

• To prevent dense derivatives, the potential must have a local area of

influence: changes at some local patch of the surface will not affect

the potential in a far away region.

• The surface supports a differentiable interpolation between the degrees

of freedom (generalized coordinates) and individual contact points.

This is required for computing the contact Jacobian Jc.
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Some previous work has employed embedded signed distance fields for

collision handling [102], however distance fields defined on polygonal surfaces

are non-differentiable and can pose serious convergence issues when used

as constraints in optimization solvers [84]. This is further illustrated in

Appendix A.

A widely successful method proposed by Li et al. [84] used unsigned

distance fields to enforce non-penetration. However, this approach requires

accurate continuous collision detection, and cannot handle initially inter-

secting geometry, which is ubiquitous in animation pipelines. We propose

to simplify the technique by using existing information about polygon ori-

entations to construct a signed potential. In this way, our method fills a

different niche, where initial interpenetrations are tolerated.

It is worth noting that the desired potential field need not correspond

to or approximate a signed distance to the polygonal surface. It is sufficient

for the potential to be signed and smooth at the surface, whereas its scaling

can be adjusted for optimal convergence. Nevertheless, the implicit surface

must closely approximate the object being simulated. To show that our

implicit surface stays sufficiently close to the polygonal surface, we measure

the Hausdorff distance between the two surface representations.

In the remainder of this section we propose a collision surface represen-

tation that meets the above criteria.

3.4.1 Local moving least squares potential

Suppose we have a solid domain Ω(q) ⊂ R3 parametrized by q with a smooth

boundary ∂Ω. We omit the parameter q in this section for brevity, but it

will become significant in Section 3.5.3.

Note that ∂Ω has a smooth outward facing unit normal field. Let S be

a finite set of sample points on ∂Ω. Then each s ∈ S is endowed with a well

defined outward facing unit normal ns.

We would like to compute a global potential Ψ : R3 → R whose zero iso-

surface approximates the surface ∂Ω. Ψ should have C1 continuity at the

zero iso-surface such that it can be included as a smooth inequality constraint
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in a dynamics simulation to resolve contacts. We define the approximate

solid domain implicitly using Ψ:

Ω̃ := {x ∈ R3 : Ψ(x) ≤ 0 }.

As before, we require locality. To achieve this, neighbouring local potentials

are blended using barycentric weights.

At each sample point s ∈ S, we assign a local potential field ψ( · ; s) :

R3 → R, which can be chosen arbitrarily but must be vanishing at the

sample point and have a gradient aligned with ns. An example of such a

field is

ψ(x; s) = n⊤
s (x− s).

Then for any x ∈ R3 we identify a neighbourhood of samples close to x

and blend the corresponding local potential to form a C1 continuous global

potential field Ψ. In particular, let N (x) ⊂ S be a neighbourhood of samples

near x, then define

Ψ(x) =
∑

s∈N (x)

w(x; s)ψ(x; s), where
∑

s∈N (x)

w(x; s) = 1.

The partition-of-unity criterion allows Ψ to be independent of the size of

N (x).

It remains to define the neighbourhood N and the barycentric weight

function w. This framework allows us to define a local potential field with the

desired properties, and there are many possible options for definingN and w.

Furthermore, this formulation is a specialization of the more general Mov-

ing Least Squares framework for interpolating and approximating implicit

surfaces [124]. However, in contrast to [124], we use a local weight function,

which is critical for our application because we require sparse derivatives.

Weight function

There are three main properties we require from the weight function:

Locality w(x; s) must vanish when x and s are sufficiently far away.
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i. ii. iii. iv. v.

Figure 3.3: A cross section of the potential field Ψ(x) generated by
the cylinder from Figure 3.2 with different kernels, parameters
and resolutions (last two images). The shape of the cylinder
cross section which is used to generate the potential is outlined
in white in each of the examples. Starting with the heptagonal
cylinder, the potential fields generated by w̃R with ϵ = 10−5

(i.), w̃R with ϵ = 0.1 (ii.) and finally the potential generated
by w̃cubic

R (iii.) are shown. The radius R is set to be half of the
largest triangle diameter in the input mesh. Points outside the
colored area have empty neighbourhoods NR and are omitted
from the contact solve. When using the w̃cubic

R kernel, we can
see that increasing the resolution of the cylinder produces a
similarly smooth contact surface (iv. and v.).

Smoothness w should have continuous derivatives for the resulting poten-

tial to be smooth at the zero iso-surface.

Interpolation The zero iso-surface of Ψ must pass through (or be close to)

the sample points S.

We repurposed the weight function presented in [106], which was origi-

nally used for interpolation in element-free Galerkin methods. This weight

function is defined as

wR(x; s) :=
w̃R(∥x− s∥2)∑

s∈NR(x) w̃R(∥x− s∥2)
(3.7)

w̃R(r) :=

(
(r/R)2 + ϵ

)−2 − (1 + ϵ)−2

ϵ−2 − (1 + ϵ)−2
, (3.8)

where ϵ≪ 1 determines how closely the potential will approximate the sam-

ple points and R is a radius of influence that determines the neighbourhood:

NR(x) := { s ∈ S : ∥x− s∥2 < R } .
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This weight function is useful when R is large, because ϵ can be reduced

to improve the interpolation of the samples in S. However, when R is

relatively small, we can use a simpler cubic weight function given by

w̃cubic
R (r) := 1− 3

( r
R

)2
+ 2

( r
R

)3
.

This function is generally smoother than w̃R and is faster to compute. How-

ever, it is not guaranteed to interpolate the provided samples and it tends

to exaggerate large curvature regions — concavities in the samples become

deeper and convexities become more protruding. We found that w̃R pro-

duces better results when local deformations are larger, requiring larger

values for R, but for smaller deformations, w̃cubic
R is sufficient. Figure 3.3

shows the potential generated by each kernel for a heptagonal cylinder.

Discretization

As the surface deforms, we need to know how the samples and their corre-

sponding normals change. In other words, we need to be able to compute

their derivatives. This calls for a more concrete discretization scheme for

the solid domain. Because we use the standard tetrahedral finite element

method to model elasticity, we chose to sample the same mesh on the surface

to generate our implicit collision surface. We sample the tetrahedral mesh

at the centroids of all surface triangles1. The sample normals are computed

from each triangle (p1,p2,p3) as

ns =
(p1 − p2)× (p1 − p3)

∥(p1 − p2)× (p1 − p3)∥2
.

To summarize, the equations of motion are solved with FEM on a tetrahedral

mesh, where frictional contact forces at mesh vertices are mapped from the

implicit surface, which is generated using oriented sample points at triangle

centres on the surface of the tetrahedral mesh. While mapping normal

1We could have chosen to sample the mesh at the vertices and use an averaging scheme
to compute vertex normals, however this is more complex and would generate denser
Jacobian and Hessian matrices.
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forces on the implicit surface to mesh vertices is straightforward, mapping

tangential forces requires more work to ensure that purely tangential forces

cause accurate torques on the FEM mesh. Mapping normal and tangential

forces this way is given by the contact Jacobian defined in the next section.

Contact Jacobian

For frictionless contact problems, the formulation above is sufficient. How-

ever, when friction is involved, we must also map tangential force impulses

to the corresponding degrees of freedom.

Our generalized coordinates correspond to vertex positions on a tetra-

hedral mesh. We use this fact to construct the contact Jacobian.

Let Qs(x) ∈ R3×3 be a minimal rotation matrix from the coordinate

frame at sample point s to the coordinate frame at a contact point x such

that

Qs(x)ns = ∇xΨ(x).

In words, the matrix Qs(x) rotates normals at sample points to align with

the gradient at contact points. We can compute Qs(x) as

Qs(x) = I+ [z]× + [z]2×
1

1 + ns · ∇xΨ(x)
.

where I is the 3×3 identity, z = ns×∇xΨ(x) and [z]× is its skew-symmetric

matrix form. This matrix allows us to transport any vector at a site s into

the coordinate frame of the contact at x such that normal and tangent

vectors at s remain normal and tangent respectively at x.

Now if s̄ ∈ R3|S| is a stacked vector of sample points and v̄ is the stacked

vector of mesh surface vertex positions, then we can write the contact Ja-

cobian at each contact i as

Ji =
∂xi

∂q
=
∂xi

∂v̄

∂v̄

∂q
=
∂xi

∂s̄

∂s̄

∂v̄

∂v̄

∂q
,

which allows us to use the kernel weights to interpolate velocity contributions

from mesh vertices. Since q corresponds to mesh vertices and v̄ is a subset
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of those on the surface, we have that ∂v̄
∂q is a simple selection matrix. In our

case, sample points are located at surface triangle centroids, which means

that ∂s
∂v is the identity matrix scaled by 1/3 if v is a vertex of the triangle

for sample s and zero otherwise. It follows that ∂s̄
∂v̄ is a sparse block matrix

of scaled 3× 3 identity matrices.

Finally we can define

∂xi

∂s̄
=

{
wR(x; s)Qs(xi) if s ∈ NR(xi)

0 otherwise
,

which is a block matrix of scaled rotations. The sparsity of ∂xi
∂s̄ is determined

by the choice of NR.

3.5 Frictional contact

In this section we will propose a set of conditions on f fc to produce a force

that satisfies the Coulomb friction model. We also propose a concrete algo-

rithm for solving this problem. Here, the discussion of friction and contact

is more convenient with impulses rather than forces, so for the remainder of

this chapter, we will use r := hf fc to denote the frictional contact impulse.

The Coulomb friction model is a reasonable point of departure for formu-

lating friction problems since other static models include Coulomb friction

as a component [89]. However, some friction models smooth the friction

curve, which can allow for a simpler formulation [52, 84]. In Chapter 4

we propose an alternative method for resolving smooth friction models on

smooth implicit surfaces.

3.5.1 Contact space

To set the context for describing Coulomb friction, we start by defining the

vector space of impulses and velocities on the set of all contact points C in

our system. Hereafter let C denote the index set of all potential contact

points at time t, with |C| = n.

For any vector yi ∈ R3 in physical space associated with a contact point
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i ∈ C, we define yN,i and yT,i to be the normal and tangential components

of yi with respect to the contact surface. We call yN,i and yT,i contact space

coordinates and yi = (yN,i, yT,i) ∈ R3 denotes the whole 3D vector in contact

space. In general we use the sans-serif font for quantities in contact space

coordinates, which implies a unique orthogonal change of basis for each

contact point. This notation is used consistently in the following sections to

describe velocities and impulses at the point of contact.

To make this precise we designate a change of basis matrix B = [BN |BT]

where BN and BT are block diagonal matrices with:

[BN]i,i := ni and [BT]i,i := [ti |ni × ti]

where ni is the unit normal and ti is a tangent direction at contact point

i ∈ C. This allows us to write the normal and tangential components of the

stacked vector y as

yN := B⊤
N y and yT := B⊤

T y, or just y := B⊤y.

3.5.2 Contact

Assume for the moment that rT = 0 (or more precisely B⊤
T J

⊤
c r = 0). Then

contact can be defined by the complementarity condition

0 ≤ rN ⊥ vN ≥ 0, (SFC)

which indicates that only one of rN,i and vN,i may be non-zero at any given

time for each i ∈ C, although both must be non-negative at all times. This

is called the Signorini-Fichera condition (SFC) [49, 127].

Assuming that rT = 0, Eq. (2.6) with Eq. (SFC) become the Karush-

Kuhn-Tucker (KKT) conditions for the following constrained optimization

problem

minv γ(v)

subject to vN ≥ 0,
(3.9)
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abbreviated with γ(v) := 1
2

∥∥vt − v
∥∥2
M

+W (qt + hv) and vN = B⊤
N Jcv as

usual. The Lagrange dual of Eq. (3.9) reveals the role of the contact impulse

rN as the Lagrange multiplier:

(rt+h
N ,vt+h) = argmax

λ≥0
min
v
γ(v)− λ⊤vN, (3.10)

where rt+h
N is the optimal value of the Lagrange multiplier λ and vt+h is the

optimal value of the generalized velocity v as before. The original problem in

(3.1) is a subproblem of Eq. (3.10) maximized over λ ≥ 0 whereWfc(λ,v) =

−λ⊤B⊤
N Jcv.

We use the dual form in our exposition since it explicitly lists inputs and

outputs of the optimization problem. In practice, we differ to an off-the-shelf

nonlinear constrained optimization solver to find the optimal values.

Non-penetration constraint

To enforce impenetrability, we constrain a selection of vertices on one sim-

ulation mesh k to lie outside the collision surface of all meshes except mesh

k itself represented by Ψ[qk̄] (defined in Section 3.4) where qk̄ are all the

coordinates in q that do not affect the deformation of mesh k (this effec-

tively excludes the possibility of self-contact). We limit ourselves to contact

between distinct objects2 to ensure this mutual exclusion. Let Vk be the

set of all vertices of mesh k to be constrained. Then the non-penetration

constraint can be written as

Ψ[qk̄](v) ≥ 0 ∀v ∈ Vk. (3.11)

To simplify the following sections we stack all constraints into one vector

ϕ(q) with the following component-wise definition:

ϕk,i(q) := Ψ[qk̄](vi) ∀vi ∈ Vk, ∀k. (3.12)

2Distinct objects are represented by meshes with no shared vertices or edges.
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This allows us to write the constraint simply as

ϕ(q) ≥ 0. (3.13)

The union of all constrained vertex sets Vk forms the complete set of

contact points in C. Finally with the non-penetration constraint substitut-

ing (SFC), the problem becomes

(rt+h
N ,vt+h) = argmax

λ≥0
min
v
γ(v)− 1

h
λ⊤ϕ(qt + hv), (3.14)

where we apply backward Euler to the argument of ϕ such that the con-

straint is enforced implicitly. Although solving Eq. (3.14) as stated can be

expensive since ϕ can be very nonlinear, a common technique is to linearize

this constraint about qt to simplify the problem in order to achieve better

performance at the cost of accuracy.

This formulation also does not preclude initial interpenetrations where a

vertex of one object may be located inside the negative of another object’s

contact potential Ψ. Whether initial interpenetrations are valid or not is de-

termined by the numerical method used to resolve the inequality constraint.

As we will see by the end of Section 3.5.3, the final problem we target can

be solved by a nonlinear programming package implementing filtered line

search [50, 141], which allows initial constraint violations.

3.5.3 Friction

When rT is allowed to be non-zero, the complete frictional contact impulse r
must satisfy the complete Coulomb law. As we mentioned before, r cannot
be derived from a single potential but it can be derived by minimizing two

coupled potentials [40]. We can use the result we developed in the previous

section but reintroduce the unknown tangential impulse rT into the non-

penetration problem in Eq. (3.14) as follows:

(rt+h
N ,vt+h) = argmax

λ≥0
min
v
γ(v)− 1

h
λ⊤ϕ(qt + hv)− v⊤T rT(λ,v), (3.15)
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where vT = B⊤
T Jcv as before and rT is a function of the contact impulse λ

and velocity v, which will become evident in the next section. The original

problem (3.1) can now be seen as a subproblem of Eq. (3.15) maximized

over λ ≥ 0 as in Eq. (3.10), but this time the frictional contact potential is

given by

Wfc(λ,v) = −
1

h
λ⊤ϕ(qt + hv)− v⊤J⊤

c BTrT(λ,v).

Maximal dissipation principle

For single point contact conditions, frictional impulses for sliding can be de-

rived from the maximum dissipation principle (MDP) as described in [105].

MDP states that the frictional impulse at a point of contact i ∈ C maximizes

negative work:

rT,i = argmax
y∈µrN,iD

−y⊤vT,i = argmin
y∈µrN,iD

y⊤vT,i, (3.16)

where D ⊂ R2 is the closed unit disc centered at the origin and vT,i is

the tangential relative velocity vector at contact i. The minimization in

Eq. (3.16) is trivially solved by

rT,i = −µrN,i
vT,i

∥vT,i∥
(3.17)

on the disc when vT,i ̸= 0.
We can now extend Eq. (3.16) to all the contacts in C. We define DC :

Rn → R2n to be the map from stacked contact impulses to a Cartesian

product of closed discs in the tangent space of all contact points in C:

DC(y) :=
∏
i∈C

yiD

where yi ∈ R is the ith component of y. Then Eq. (3.16) can be rewritten for
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all contact points as a function of contact impulses and generalized velocities:

rT(λ,v) = argmin
y∈DC(µλ)

y⊤B⊤
T Jcv. (MDP)

3.5.4 Frictional contact solutions

The remaining question is how to simultaneously solve the contact and fric-

tion problems in Eq. (3.15) and Eq. (MDP) respectively. It is well known

that finding a global optimum for both optimization problems is NP-Hard

[69], however we can focus on finding an approximation to the global opti-

mum.

It is worth noting that although a closed form solution to Eq. (MDP)

exists for non-zero velocities, rT becomes set valued at zero velocity. In

Chapter 4 we reformulate this problem as an inclusion (4.3), and use a

smooth approximation technique [52, 84] to combine it with damping and

elasticity in a single nonlinear system.

Time-splitting

An important consideration used in [21, 39, 69, 83] is that elastic impulses

move through a typical soft solid at a much slower rate than frictional contact

impulses. For instance, consider a rubber ball bouncing against the solid

ground. During the time step when contact initially occurs between the ball

and the ground, the contact impulse is felt immediately by the ball, causing

it to deform to avoid penetrating through the floor. Given that the ball is

soft enough, it takes multiple time steps for elasticity to reverse the velocity

field on every point on the ball such that it bounces back. This may justify

splitting the solve for elasticity from frictional contact in certain scenarios.

However, implicit time integration allows us to take large time steps,

within which elastic and frictional contact impulses may be comparable in

magnitude. This is further exacerbated when the hyperelastic material is

stiff.

Furthermore, as previously mentioned in Section 3.2, and explained in
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[69, §4], friction and contact must be resolved simultaneously.

These observations motivate a novel predictor-corrector scheme (other-

wise known as time-splitting) for solving the coupled variational problem in

Eqs. (3.15) and (4.2). Instead of splitting the entire frictional contact solve

completely from the elasticity optimization as in [21, 69], we opt to split only

the incremental update to the friction impulse as we have demonstrated in

Section 3.3.3. We call this mechanism friction forwarding since it effectively

forwards the computed friction impulses from one time step to the next as an

external force. In other words, we propose a three step algorithm following

Eq. (3.6):

1. Compute the intermediate (predictor) velocity v∗ and contact impulse

r∗N by solving the elasticity problem subject to contact constraints as

well as friction impulses from the previous time step:

(r∗N,v
∗) = argmax

λ≥0
min
v
γ(v)− 1

h
λ⊤ϕ(qt + hv)− v⊤T rtT. (3.18)

2. Compute the predictor velocity

v∗∗ = v∗ −M−1J⊤
c

(
BNr∗N +BTrtT

)
(3.19)

3. Using r∗N as the initial guess for the contact impulse, and the predictor

impulse computed from v∗∗, solve the modified staggered projections

as described in Section 3.5.4, to obtain the full friction and contact

impulses rt+h
T and rt+h

N respectively. Then use them to update the

velocity

vt+h = v∗∗ +M−1J⊤
c

(
BNrt+h

N +BTrt+h
T

)
(3.20)

To solve the first step as written, we would require a nonlinear optimiza-

tion solver capable of enforcing nonlinear inequality constraints. This re-

quirement can be relaxed by linearizing the contact constraint, convert-
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ing Eq. (3.18) into

(r∗N,v
∗) = argmax

λ≥0
min
v
γ(v)− λ⊤

(
∂ϕ

∂q

t

v +
1

h
ϕt
)
− v⊤T rtT, (3.21)

where ϕt = ϕ(qt).

Note that friction forwarding is distinct from warm-start as described

in [69]. Our method uses the friction from the previous time step to com-

pute the velocity predictor v∗, whereas Kaufman et al. [69] use the friction

from the previous step only as a starting guess for the staggered projections

algorithm.

Modified staggered projections

In this section we will describe how staggered projections can be solved

efficiently in contact space without linearizing the friction cone defined by

DC .

To summarize we aim to solve Eq. (3.20), subject to (SFC) and Eq. (4.2)

as reproduced below

v = v∗∗ +M−1J⊤
c (BNrN +BTrT) (3.22a)

0 ≤ rN ⊥ B⊤
N Jcv ≥ 0, (3.22b)

rT = argmin
y∈DC(µrN)

y⊤B⊤
T Jcv. (3.22c)

First, let us define the projection operator PT : Rn × R3n → R2n of

stacked impulses in physical space onto the set of contact tangent discs as

follows

PT(rN; ξ) := argmin
y∈DC(µrN)

1

2
∥BTy − ξ∥2M−1

e
. (3.23)

where M−1
e := JcM

−1J⊤
c is the inverse of the effective mass (Delassus op-

erator) at contact points. Similarly we can define the projection of impulses
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onto the set of contact normals:

PN(ξ) := argmin
y≥0

1

2
∥BNy − ξ∥2M−1

e
. (3.24)

Given these two projection operators we can write down the staggered

projections scheme as

rkT ← PT

(
rk−1
N ; z−BNrk−1

N

)
(3.25a)

rkN ← PN

(
z−BTrkT

)
(3.25b)

starting with r0N = r∗N and a constant predictor

p = −MeJcv
∗∗. (3.26)

Unfortunately as written, Eq. (3.23) is a quadratic problem subject to

nonlinear inequality constraints. As such, popular methods for friction simu-

lation [69, 115] often discretize the contact tangent discs to linearize inequal-

ity constraints. This approach works, but can produce visible artifacts when

the resolution of the disc discretization is low [83]. To maintain both speed

and accuracy, we choose to reparametrize the contact space into cylindrical

coordinates instead, producing a nonlinear problem with bounds constraints.

This allows us to rewrite Eq. (3.23) as

PT(rN; ξ) := argmin
θ∈[0,2π]n
0≤α≤µrN

1

2
∥BTR(θ,α)− ξ∥2

M−1
e
, (3.27)

where θ and α are stacked vectors of angles and radii in the tangent plane of

each contact respectively. Then R : [0, 2π]n × [0,∞)n → R2n is a nonlinear

reparametrization operator that can be defined per contact as

R(θi, αi)i = (αi cos(θi), αi sin(θi)) for all 1 ≤ i ≤ n.

The complete procedure is shown in Algorithm 1.
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ALGORITHM 1: Velocity Step

Input:

kmax ← maximum number of friction solve iterations allowed

ϵ← tolerance for relative friction error

h← current time step

Me ← effective mass (Delassus operator)

M← generalized mass matrix

qt,vt ← previous generalized positions and velocities

rtT ← previous friction impulse

Output: vt+h ← generalized velocity for the next time step
1 begin Solve the constrained optimization problem in Eq. (3.21):

2 (r∗N ,v∗)←

{
argminv γ(v)− v⊤T rtT

s.t. ∂ϕt

∂q v + 1
hϕ

t ≥ 0

3 end

4 v∗∗ ← v∗ −M−1J⊤
c (BNr∗N +BTrtT) /* predictor velocity in Eq. (3.19)

*/

5 p← −MeJcv
∗∗ /* predictor impulse in Eq. (3.26) */

6 begin Solve friction problem to convergence:
7 r0N ← r∗N
8 for k ← 1 to kmax do
9 rkT ← PT

(
rk−1
N ;p−BNrk−1

N

)
10 rkN ← PN

(
p−BTrkT

)
11 rkT ← BTrkT

12 err ←
∥rkT−rk−1

T ∥2

M
−1
e

∥rk−1
T ∥2

M
−1
e

13 if err < ϵ then
14 break
15 end

16 end

17 end

18 rt+h ← BTrkT +BNrkN
19 vt+h ← v∗∗ +M−1J⊤

c r
t+h /* Eq. (3.20) */

3.6 Results

The following examples are generated using our Houdini [125] plugin writ-

ten in C++ and Rust [100] and backed by the interior point optimization
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package, Ipopt [141]. Rust provided us with additional confidence in our nu-

merical results due to its strong memory and thread safety guarantees with-

out sacrificing performance. Ipopt allowed us to focus on the core method

without the need for a custom constrained optimization solver. We used

Intel MKL with the PARDISO direct linear solver as a backend for Ipopt.

For nearest neighbour lookup, we used an off-the-shelf R*-tree [10] with

bulk loading. The tree is rebuilt for each iteration where the implicit surface

samples are updated.

Some of our results are compared with Houdini’s FEM cloth solver to

demonstrate how our method measures up to a popular industrial FEM

implementation, which could be used to solve similar problems. It is worth

noting that Houdini’s contact model uses penalty forces. To establish a

point of reference with academic works, we compare also against the Argus

cloth simulator [83] where we disable cloth remeshing to produce an identical

cloth mesh between the two methods. Our simulator is publicly available

under a permissive open source license to encourage further development

and improve reproducibility of our results.

All examples were run on the AMD Ryzen Threadripper 1920X CPU

with 12 cores, 24 threads at 3.7 GHz boost clock and 32GB RAM. We used

Blender 2.8 [111] and ParaView 5.7 [6] for all generated images and videos.

We used ϵ = 10−4 in all simulations. We pruned contacts with a potential

value (divided by bounding box size) of greater than 10−4 from the friction

solve.

Projections in Eqs. (3.24) and (3.27) are solved to convergence with Ipopt

using a residual tolerance of 10−10. Elasticity and dynamics in Eq. (3.21)

is also solved with Ipopt with a tolerance of 10−9. We rescaled variables

and objective functions such that all first order derivatives are close to 1 in

magnitude.

In examples involving cloth, it is always the volumetric solid that pro-

duces the implicit contact field and the cloth collides at cloth vertices.

Ramp slide. A soft block made from 320 tetrahedra slides down a slope

at θ = 10 degrees from the horizontal with varying coefficients of friction

43



Example Method µ # Elements Time Seconds
Frame

Stopped Sliding

Block Slide
Houdini 0.177

320
8:32 0.10 No

Ours 0.177 3:21 0.04 Yes
Ours 0.176 2:01 0.02 No

Cloth Slide

Argus 0.177
2

1:14 0.10 Yes
Ours 0.177 3:21 0.11 Yes
Ours 0.176 2:54 0.09 No

Argus 0.177
722

1:55 0.15 No
Ours 0.177 5:51 0.19 Yes
Ours 0.176 5:21 0.17 No

Argus 0.177
1322

6:52 0.55 No
Ours 0.177 10:57 0.36 Yes
Ours 0.176 11:21 0.37 No

Table 3.1: Timing results (m:ss) over the entire 5000 frames of the
block slide and 750 frames of the cloth slide simulations. These
results compare different simulators with comparable material
properties. We set ∆t = 0.01s for all simulations. The rightmost
column indicates whether eventually stops sliding, which is ex-
pected only when µ > tan(10◦).

in Figure 3.4a. This example demonstrates the ability of our method of

producing precise expected friction response. Our method is able to stop

the cube from sliding off the ramp with a value of µ within 0.001 of the

expected stopping coefficient µ = tan(θπ/180). Timing comparisons are

presented in Table 3.1.

A similar experiment is performed with cloth to compare our method to

Argus. While stopping is observed at µ = 0.177 with their method in cer-

tain configurations, even modest scaling ratios can produce vastly different

results at larger time steps. For instance, we compare how a square piece

of cloth of varying resolutions slides down a long ramp in Figure 3.4b. In

contrast, Argus we are able to produce consistent friction behaviour at all

resolutions.

Cloth on a cylinder. In Figure 3.5 we drape a patch of cloth on a cylinder

to demonstrate the contact fidelity of our method and compare it against
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Houdini
Ours

Frame 1

µ = 0.177
µ = 0.177

µ = 0.176 Frame 1212 Frame 2261

(a) Block Slide. A simulation of a soft FEM block sliding across the ramp. Hou-
dini’s simulation fails to produce adequate friction forces to stop the block from sliding
off at µ = 0.177 (top). Our method successfully stops the block from sliding off at
µ = 0.177 (middle) and expectedly allows it to slide off at µ = 0.176 (bottom).

Argus
Ours

µ = 0.177
µ = 0.176

Frame 1

Coarse Medium Fine

Frame 193 Frame 1732

(b) Cloth Slide. A square piece of cloth with varying resolutions slides down the
ramp with varying coefficients of friction as shown. The lightly colored ramp has a
coefficient of friction of µ = 0.176, while the darker ramps have a higher coefficient
at µ = 0.177. While Argus produces stopping at the coarsest level (left-most ramp),
the simulation fails to produce adequate friction forces for higher resolutions. (Not
shown) On the µ = 0.176 ramp, Argus’ simulation results in slipping at all resolutions
albeit with significantly different accelerations. Our method (middle and right-most
ramp) produces a consistent friction behaviour regardless of resolution as shown.

Figure 3.4: Ramp Slide. Simulations of objects sliding on a rigid ramp
inclined at exactly 10 degrees with the horizontal. The physical
minimum friction coefficient required for sticking as computed
from the ramp incline is µ = tan(π/18) ≈ 0.176326.

Argus and Houdini’s FEM cloth simulation. Figure 3.5a demonstrates the

artifacts produced by standard polygonal collision detection and response

schemes, and shows how our method overcomes these limitations. Polygon

based contact schemes require fine resolutions to improve contact fidelity,

whereas our approach naturally produces smooth contact surfaces even with

coarse discretizations. In this example, our method allows the cloth to stick

to the cylinder. While Houdini’s simulations improve the friction response

with higher resolutions it ultimately fails to stick3.

In Figure 3.5b we use a similar setup to compare against the non-smooth

3Sticking is not achieved even after increasing substeps and collision passes to 20, as
well as increasing µ to 1.
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friction solver from Argus. This demonstrates that the sliding artifacts are

not merely caused by a penalty based friction solve used in Houdini but really

from polygon-based contact. Note that under mesh and timestep refinement,

our method tends towards the same solution as in Argus, although exact

correspondence would require identical material models.

Figure 3.5c demonstrates how an implicit surface contact model allows

us to produce consistent sliding behaviour irrespective of resolution. In

contrast, polygonal contact models like Argus’ or Houdini’s can produce

vastly different contact behaviours depending on mesh resolution.

We are able to demonstrate precise control over slipping behaviour by

changing the friction coefficient µ in Figure 3.5d. Additionally in Figure 3.5e

we show that adjusting the configuration of the cloth will cause it to slip

when µ is held constant.

Performance numbers shown in Table 3.2 indicate that our method is

comparable to existing implementations for modest resolutions. In order

to produce better scaling with resolution, we recommend using an iterative

linear solver.

Ball spin. In Figure 3.6 a spinning tennis ball with a hollow core (as shown

in Figure 3.7) is dropped onto a slanted ramp to produce a bounce commonly

observed in racket sports and golf. We experiment with µ being 0.01, 0.5,

and 1.0 to produce a deflected bounce with varying intensity. The spin is

100 degrees per second in all 3 examples. Our method correctly produces

larger bounce deflections for larger coefficients of friction. We are also able

to reproduce the subtle behaviour of the ball bouncing up the slope (to the

right) after it has already started moving down the slope (to the left) due to

tangential elasticity forces at the point of contact, which convert the elastic

potential into rotational energy. This phenomenon can easily be observed

in bouncy rubber balls (SuperBalls).

Stool slide. Our method is able to produce the stick-slip chatter phenomenon

on the legs of a stool as it slides down a subtle 10 degree slope as show in
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Example # Elements Method µ Time Seconds
Frame

Sticking

i.
2K Houdini 0.2

1:36 0.19
ii. 1:26 0.17
iii. 1:25 0.17

iv. 2K Ours 0.2 1:32 0.19

Reliability

i.
2K Argus 0.12

3:12 0.38
ii. 2:38 0.32
iii. 2:45 0.33

iv. 2K Ours 0.12 0:09 0.09

Resolution
independence

i. 392
Argus 0.13

0:35 0.07
ii. 2K 2:30 0.30
iii. 7K 7:17 0.87

iv. 392
Houdini 0.13

1:52 0.22
v. 2K 2:19 0.28
vi. 7K 5:54 0.71

vii. 392
Ours 0.13

0:17 0.03
viii. 2K 0:38 0.08
ix. 7K 3:56 0.47

Coefficient
of friction

i.

2K Ours

0.12 0:26 0.05
ii. 0.13 0:33 0.07
iii. 0.14 0:35 0.07
iv. 0.15 1:10 0.14
v. 0.16 1:17 0.15

Sliding
consistency

i.

2K Ours 0.15

1:13 0.15
ii. 1:25 0.17
iii. 1:19 0.16
iv. 0:54 0.11
v. 0:51 0.10

Table 3.2: Timing results (m:ss) over the length of entire correspond-
ing simulations for the Cloth on a cylinder example from Fig-
ure 3.5.

Figure 3.8. As the stool slides down the ramp, each leg of the stool oscillates

between sticking and slipping friction modes at the points of contact with

the ground. This occurs due to the elasticity of the stool, which periodically

shifts the pressure between the front and hind legs of the stool. As with the

other ramp slide examples, we use the ramp to produce the implicit field.

47



Belt drive. As shown in Figure 3.9, we simulate a belt drive mechanism

where a smaller rigid cylinder drives a larger FEM cylinder connected with

a belt loop. The friction coefficient between the belt and the small driver

cylinder is kept constant at µ = 0.5. Setting the friction coefficient between

the large soft cylinder and the belt to µ = 0.2 induces sticking behaviour,

which successfully drives the soft cylinder around its axis and stops it when

the driver abruptly stops. When the coefficient of friction is reduced to

µ = 0.02, the soft cylinder is accelerated as before, however it slips through

the belt when the driver stops.

Glass pinch. Rigid body simulation is usually insufficient to solve various

control problems like picking up a rigid object [15, 77]. We simulate a rigid

whiskey glass being pinched and lifted between the index finger and the

thumb of an animated soft hand model as shown in Figure 1.1. Our method

produces reasonably accurate deformation at the contact patch on the tip of

each digit. The shape of the contact patch remains consistent after the grasp

as observed on real human digits. We show a detailed friction vector field

on the tip of each digit for the grasp, lift and hold stages of the simulation

in Figure 3.10. In the grasp stage, friction is pointing towards the middle of

the contact patch to oppose the spreading of flesh around the contact surface

as expected. In the lift and hold stages, an interesting pattern emerges on

the index finger pad caused by a subtle tilt of the glass. Since the contact

pivots are not perfectly aligned between the index finger and the thumb,

the glass tilts slightly towards the index finger and into the hand. The tilt

towards the index finger transfers the load from the tangential component

to the normal on the finger pad, which is why friction forces are larger on

the thumb. Finally, the tilt towards the hand applies a torque onto the

index finger pad causing the spiral pattern of the friction vector field. In

this example, the hand mesh generates the implicit contact field, and the

glass collides at vertices, although the opposite configuration also works.
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i. ii. iii. iv.

(a) Sticking. First three cylinders from the
left show Houdini’s cloth simulation at differ-
ent discretizations. The last cylinder shows our
method. Here we use µ = 0.2, and the cloth
is initially offset by 0.8 m vertically between
the ends. With our method the cloth sticks,
whereas with Houdini’s it slips even at higher
resolutions. The mesh must be sampled uni-
formly to produce a quality implicit surface, as
shown by the uniform triangulation of the last
cylinder. The contact surface is always smooth
as shown in Figure 3.3.

i. ii. iii. iv.

Frame 124 Frame 686

(b) Reliability. First three cylinders from the
left show cloth simulation from Argus at different
cylinder discretizations. The last cylinder demon-
strates our cloth simulation at the coarsest sam-
pling, which shows symmetric sliding without arti-
facts. This example uses µ = 0.12 and ∆t = 0.02,
with the same configuration as in Figure 3.5a. In
this example, the middle two cylinders demonstrate
how additional artificial friction can be introduced
due to polygon-based contact. Collision detection
schemes can also be susceptible to artifacts as seen
on the left-most cylinder.

i. ii. iii.

iv. v. vi.

vii. viii. ix.

(c) Resolution independence. Ar-
gus (top row) and Houdini’s method
(middle row) is compared with our
method (bottom row) for different
cylinder and cloth resolutions with
µ = 0.13. Here our contact model
produces similar results regardless of
resolution, while polygon based con-
tact handling such as Houdini’s or Ar-
gus’ may produce vastly different be-
haviours.

µ = 0.12 0.13 0.14 0.15 0.16

i.
ii.

iii.
iv. v.

(d) Coefficient of friction.
From left to right, the coef-
ficient of friction µ is varied
from 0.12 (leftmost) to 0.16
(rightmost) by increments of
0.01. Initially, the draped cloth
ends are offset vertically by 0.8
m. Slipping is consistently de-
creased as the coefficient of fric-
tion is increased from left to
right with correct stopping at
µ > 0.14 as analytically com-
puted in Appendix B.

i.
ii.

iii.
iv. v.

(e) Sliding consistency.
The cloth is draped with an
increasing offset from being
perfectly balanced. From
right to left, the initial off-
set distance is varied from
0 m to 0.64 m in incre-
ments of 0.16 m. This ex-
ample demonstrates a con-
sistent response to the in-
crease in force difference be-
tween the two sides.

Figure 3.5: Cloth on a cylinder. A patch of cloth draped over a static
cylinder 6 m in length with radius of 0.5 m. The cubic kernel
was used to generate the contact field around the cylinder. Here,
∆t = 0.01s (unless otherwise stated) and all Houdini’s cloth
simulations are run with 4 collision and simulation substeps.
Material parameters between different simulators are matched
on a best effort basis.
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µ = 0.01

µ = 0.5

µ = 1.0

(a) (b)

Figure 3.6: Ball spin. (a) Three identical hollowed balls with differ-
ent coefficients of friction (as shown) are dropped on a ramp
sloping down to the left. (b) The center-of-mass trajectory of
the ball with the largest coefficient of friction (µ = 1) is plotted.
After the first two bounces up the slope caused by the spin of
the ball, friction on the ball causes it to change spin directions
temporarily before the ball looses enough energy and starts to
roll down the slope.

Figure 3.7: Hollow tennis ball mesh clipped to show the interior.
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Frame 956 Frame 1022 Frame 1132

Figure 3.8: Stick-slip chatter. A stool slides down a ramp demon-
strating stick-slip chatter of the stool legs.

Figure 3.9: Belt drive. The small driver cylinder is rotated at an
accelerated rate, and abruptly stopped to show slipping and
sticking for different values of µ.
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Initial

Grasp

Lift

Hold

(a) Index finger. (b) Thumb.

Figure 3.10: The friction impulse (in N·s) vector field on the index
finger and the thumb from the glass pinch simulation in Fig-
ure 1.1. Four stages of the simulation are captured for each
digit: initial, grasp, lift and hold. The initial configuration
is the frame captured immediately before any contact has oc-
curred. In the grasp stage, the finger and thumb first come
into contact with the glass. In the lift stage the hand is mov-
ing up. Finally, in the hold stage the hand is stationary.
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Frame: 1 13 17 31 223 245 264 365

(a) Low resolution ball on a trampoline.

Frame: 1 13 17 31 223 244 268 365

(b) High resolution ball on a trampoline.

Figure 3.11: Ball on a trampoline. A hollowed ball is released onto a stretched trampoline in frames 1 to
150. The trampoline is then contracted and stretched even more to launch the ball into the air in the
remaining frames. This example demonstrates reliable frictional coupling between the trampoline
closely conforming to the ball. In this example we used µ = 0.2, and the cubic kernel for generating
a smooth implicit contact surface.

53



Ball on a trampoline. To generate a more complex interaction between soft

objects, we drop a hollowed ball onto a trampoline, which is then contracted

and stretched as shown in Figure 3.11. This example further demonstrates

how a stretched thin sheet can reliably interact with another soft object

represented by an implicit surface. The animation clearly demonstrates the

tangential two way coupling between the ball and the trampoline as the ball

rolls through the well of the trampoline and finally rests near the center as

expected.

Armadillo tank top fitting. We fit a sleeveless shirt on an animated ar-

madillo model to demonstrate an application of our method for simulated

soft tissue cloth fitting. This application necessitates an accurate friction

model to achieve a realistic fit.

We compare a frictionless fit against one with µ = 0.2 against a rigid

armadillo in Figure 3.12a. Here we can see that friction is required to keep

the straps from sliding off the armadillo’s shoulders.

To gain more realism we simulate the soft tissue of the armadillo, again

with and without friction in Figure 3.12b. In the soft fit, the animation re-

veals additional effects of frictional contact, namely the transfer of dynamic

motion between the body and cloth at the point of contact. This scenario

demonstrates how our method can be used for predicting the utility of active

wear that controls soft tissue displacement during dynamic movement.
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(a) Rigid fit.

(b) Soft fit.

Figure 3.12: Armadillo tank top fit. A tank top is fit onto an animated
Armadillo model. (a) shows the garment on a rigid armadillo
without friction (left) and with µ = 0.8 (right). A more re-
alistic scenario (b) demonstrates the garment being fit on a
soft armadillo model without friction (left) and with µ = 0.8
(right).
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Example nE nV ∆t (s) Frames herr µ n ktmax/ktavg ikmax/ikavg Time Seconds
Frame

Ball spin
9K 2K 0.005 1500 0.03%

0.01 867 3/0.41 12/6.6 0:07:32 0.30
0.5 867 3/0.74 12/6.7 0:08:55 0.36
1.0 860 3/0.76 13/6.8 0:08:52 0.35

Stick-slip chatter 11K 3K 0.0003̄ 18000 < 0.01% 0.2 479 3/1.94 17/14.3 2:40:58 0.54

Belt drive 8K 2K 0.005 2500 1.4%
0.02 610 6/4.1 53/13.3 0:24:03 0.58
0.2 620 6/4.0 43/13.5 0:21:23 0.51

Glass pinch 45K 9K 0.0001 10000 0.2% 0.15 989 3/1.0 38/15.0 8:31:57 3.07

Ball on a trampoline
8K 2K 0.01 1500 0.2% 0.2 548 4/2.1 48/13.6 0:10:48 0.43
58K 15K 0.005 3000 0.02% 0.2 2963 8/2.4 182/27.5 3:56:30 4.73

Armadillo rigid fit 5K 3K 0.004 1000
0.2%

0 2542 0:08:09 0.49
0.8 2559 3/1.5 14/12.1 0:12:26 0.75

Armadillo soft fit 88K 22K 0.001 4000
0 2608 5:57:17 5.36
0.8 2609 5/1.6 53/17.2 8:05:47 7.29

Table 3.3: Timing results (h:mm:ss) over the length of entire corresponding simulations. The nE column
counts over triangles and tetrahedra with at least one free vertex. The nV column counts the total
number of simulated vertices. n is the maximum number of contact constraints. ktmax and ktavg are
the maximum and average numbers of friction steps taken per timestep respectively where the friction
solve converged. ikmax and ikavg are the maximum and average numbers of Ipopt iterations respectively
taken per friction projection step Eq. (3.27). herr is the initial Hausdorff distance of the MLS surface
to the surface of the tetrahedral mesh divided by the maximum dimension of the mesh’s bounding box.
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3.7 Discussion and conclusions

3.7.1 Limitations

Self-contact. A limitation of our method is self-contact, which is excluded

from our formulation. Self-contacts impose an additional difficulty of prun-

ing neighbourhoods Ni for each contact i since a mesh vertex should not

collide against the surface generated by its neighbours. However this re-

striction can be more complicated in creases where colliding surfaces may

be in the same neighbourhood. We leave this important extension as future

work.

Performance and scalability. Choosing an off-the-shelf non-linear solver

like Ipopt allowed us to side-step the arduous and error-prone process of

implementing a robust Newton-Raphson solver capable of enforcing linear

inequality constraints. However, the use of a direct linear solver has some

impact on the scalability of our method to larger meshes. In addition, our

method relies on the explicit construction of the Delassus operator, which

imposes scalability limitations in the total number of contacts, however, the

Delassus operator has been used in contexts with a much larger contact

count, such as hair [39]. We aim to investigate other performance bottle-

necks in the future.

Sampling. In contrast to polygon based methods for resolving contacts,

our method may require a finer sampling of the surface to produce a suffi-

ciently accurate approximation (e.g. in the Belt drive example, the sharp

corners of the cylinder raise the Hausdorff error up to 1.4%). Good qual-

ity finite element meshes tend to be locally uniform on the surface, which

is why we chose the finite element mesh to produce the implicit field di-

rectly. However, when used on a static collision mesh (like with the cloth on

cylinder example), our method can impose additional sampling steps. Thus

we recommend that MLS surfaces are used on deformable organic objects,

57



which tend to have locally uniform tesselations and few naturally sharp cor-

ners or thin features. For this reason our method doesn’t directly deal with

sharp corners, but it can do so if extended with additional remeshing and

optimization techniques [83, 97].

Friction convergence. In all our examples, the friction solve converged to

within ϵ = 10−3, however a few instances (less than 30 frames in total from

all examples) it failed to converge below ϵ = 10−4. We believe that conver-

gence can be further improved by exploring other friction solvers such as the

Fischer-Burmeister formulation [39, 70, 96]. However, non-convergence did

not seem to have any noticeable effect on contact fidelity in our examples.

3.7.2 Discussion

Friction forwarding The choice of time splitting in our approach is critical

to producing robust frictional responses. Figure 3.13 shows the effect of

forwarding the friction impulse to the next time step. This technique allows

friction to affect the elasticity solve, and as a result produces a more accurate

prediction for how friction propagates through the rest of the elastic body.

Figure 3.14 shows the artifacts produced when friction forwarding is disabled

in the glass pinch example, by removing rt from Eqs. (3.18) and (3.20).

Flexibility and extensibility Because our method does not rely on polygonal

collision detection schemes, it can be used on a variety of surface representa-

tions. The only required data is points with associated normals. This means

our frictional contact model can be used with meshless methods and with

raw point clouds generated by 3D scanners. Furthermore, our method is

agnostic to the choice of linear solvers and non-linear constrained optimiza-

tion algorithms, which simplifies future improvements and use of third-party

libraries with better performance characteristics.
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Figure 3.13: An FEM block of tetrahedra is dragged from right to left
from the top vertices. The block slides along a horizontal plane
while slightly compressed. The top frame shows the simulation
without friction forwarding (i.e. rt = 0 in Eqs. (3.18) and
(3.20)). The bottom frame shows the same simulation with
friction forwarding. The vertices near the front of the cube are
better aligned because friction is forwarded to the elasticity
solve Eq. (3.18). As a result, friction is felt by vertices not
directly in contact with the surface within a single time step.

3.7.3 Conclusion

We have introduced a novel approach for solving frictional contact problems

with smooth elastic solids. Our method uses optimization, which allows for

easy modifications with additional constraints. This formulation maintains

loose coupling between the frictional contact solve and elasticity via friction

forwarding, which permits different methods to be used in each step. We

introduced a novel approach for contact resolution using smooth local im-

plicit surfaces, which avoids additional collision detection schemes. Finally,

our implicit surface formulation permits tangential force feedback using a

parallel transport approximation. Our method is validated visually and by

comparison with a solution used widely in the visual effects industry.
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Figure 3.14: A closeup of the thumb shortly after the grasp phase of
the glass pinch example from Figure 1.1. The left image shows
the thumb surface without friction forwarding, while the right
shows the same simulation with friction forwarding. Note that
in both cases friction was solved to convergence.
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Chapter 4

Nonlinear smooth dynamics

4.1 Introduction

Frictional contact problems do not lend themselves naturally to optimiza-

tion formulations. For instance, in Chapter 3, we required iterating over 3

separate optimizations to arrive at the final result for each time step. Other

popular methods [84] are forced to lag the friction computation to allow for

an optimization-based solve.

In spite of this, energy minimization used for solving discretized ODEs

over each time step has remained popular in graphics, due to its flexibility

and robustness characteristics. Unfortunately, optimization based solvers

used for dynamics equations require specialized algorithms for handling fric-

tional contacts, which necessarily produces drawbacks in accuracy or robust-

ness.

In this Chapter, we demonstrate the failure cases in popular optimiza-

tion based frictional contact solvers and propose an alternative method for

solving elastodynamic problems with frictional contacts that is simple to

implement and accurate in comparison. By resolving the sliding frame and

contact forces implicitly when computing friction, our method can produce

more accurate friction behaviour, and it requires no additional iterations

or specialized mechanisms for coupling friction, contact and elasticity. Fur-

thermore, we show how approximate methods for handling friction such as

61



lagged friction [84] are insufficient for simulating accurate friction behaviour.

In particular, we found that the lagged friction model produces inaccurate

time-step dependent behaviour in scenarios near the stick-slip threshold,

where stuck-together surfaces are close to slipping (e.g. tire rolling and

handling delicate objects).

Frictional contact is traditionally modelled as a non-smooth problem re-

quiring sophisticated tools. In particular, non-smooth integrators, root find-

ing or optimization techniques are needed for handling inclusion terms in

the mathematical model. This drastically complicates the problem and sub-

stantially limits the number of solution approaches. While non-smoothness

is required to guarantee absolute sticking, it is not generally necessary if sim-

ulations are limited in time. In fact, when observed on a microscale, even

dry friction responds continuously to changes in velocity [145]. Accordingly,

we adopt a smooth friction formulation, and show that when applied cor-

rectly in dynamics equations it can produce predictable sticking. In contrast,

popular friction models like lagged friction cause inaccurate and time-step

dependent sticking behaviour.

To our knowledge this work is the first to demonstrate the importance

of evaluating the sliding basis (defined in Section 4.3.2) and contact forces

implicitly for accurate friction simulation.

Finally, to maintain smoothness of the entire problem we employ a

penalty force for contact resolution and a smooth implicit surface model

proposed in Chapter 3 (Larionov et al. [78]) for representing the contact

surface. We also show how additional soft constraints can be added to the

system for controlling the volume of an object.

An important consequence of having a smooth formulation, is that the

entire simulation sequence can be differentiated with respect to the trajec-

tory of the object. This property has become increasingly important in

applications that aim to produce simulations that match real world data

without the need for expensive higher-order methods or small time-steps.

Differentiable forward models can be efficiently optimized over material

properties, trajectories or initial conditions. Since forward simulation is

inherently expensive, having gradient information is invaluable.
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We include friction and contact as part of the equations of motion as

proposed by Geilinger et al. [52]. This formulation lends itself to traditional

analysis tools and methods for solving ODEs.

We further show how our system can be extended to handle other con-

straints by modelling volume preservation using a unified soft constraint

introduced in Section 4.3.3.

In summary, we propose

• A simple fully implicit method for simulating hyperelastic objects pro-

ducing realistic friction behaviour.

• Accurate high-order time integration applied to frictional contact prob-

lems for our fully implicit method as well as popular lagged friction

formulations.

• An adaptive penalty stiffening strategy for effectively resolving inter-

penetrations with penalty-based contact methods.

• A physically-based volume change penalty for controlling compress-

ibility in compressible and nearly incompressible regions.

Furthermore, to better characterize the instability of single point fric-

tional contacts, we present an eigen-analysis of a 2D point contact subject

to friction in Section 4.5.

4.2 Related work.

This section extends Section 3.2 with topics and works specific to this chap-

ter.

Frictional Contact. Recently, lots of attention was brought towards mod-

elling friction as a smoothly changing force at the stick-slip limit [52, 84].

This allows each simulation step to remain differentiable. Geilinger et al.

[52] favoured a more traditional root-finding solver combining friction and

contact forces with elastic equations of motion. In contrast, Li et al. [84]

proposed a robust optimization framework to solve for contact and lagged
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friction forces at every time step. Unfortunately, even with multiple itera-

tions, the lagged friction approach does not converge to an accurate friction

solution, which is especially noticeable in configurations near the stick-slip

threshold. Here we demonstrate this shortcoming and propose a solution

that favours friction accuracy at the cost of some robustness, while main-

taining smoothness of the system.

Higher-order integrators for contact problems. Most contact formulations,

especially those formulated in terms of constraints, intrinsically rely on a

particular choice of time discretization, which is usually BE. However, the

highly dissipative characteristics of BE have motivated the use of higher-

order schemes like TR-BDF2 or SDIRK2, which preserve high energy dy-

namics while maintaining stability [13, 92]. A benefit of smooth contact

models based on penalty or barrier functions is that both normal and fric-

tion forces are defined with explicit formulas, as opposed to implicitly defined

through constraints. This makes it possible to apply higher-order integra-

tors directly, as demonstrated by Geilinger et al. [52] for BDF2. Li et al. [84]

applied TR, however it is only applied to non-contact forces, which causes

stability issues. Brown et al. [26] focused on first-order methods and applied

TR-BDF2 to a non-smooth optimization-based contact model with lagged

friction, though this has unclear implications for high-accuracy second-order

methods. In contrast to previous work, our approach is the first to incorpo-

rate contact, friction, elasticity and damping in a single fully implicit system

evaluated using objects with deforming contact surfaces. We demonstrate

the use of BDF2, TR-BDF2 and SDIRK2 applied to our formulation in

Section 4.6.4.

Volume preservation. Many solids exhibit volume preserving behaviour.

We focus primarily on inflated objects like tires, sports equipment (e.g.

sports balls), as well as nearly incompressible objects like the human body.

Inflated objects are typically simulated using soft constraints [20], where

the volume change of an object is penalized. These methods are effective,
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however, their physical accuracy is rarely questioned. Incompressible or

nearly-incompressible materials are often modeled with stiff Poisson’s ratios

[128] or hard volume preservation constraints [123]. In contrast, we propose

a unified physically-based penalty formulation for volume preservation that

models both compressible and nearly-incompressible objects using a single

penalty controlled by a physical compression coefficient.

4.3 Formulation

4.3.1 Contact

Traditionally contact constraints have been formulated with a positivity con-

straint (strict or not) on some “gap” function d(q) that roughly determines

how far objects are away from each other. This function d may be closely

related to a component-wise signed distance function, however, generally

it merely needs to be continuous, monotonically increasing in the direction

of separation, and constant at the surface. We define di for each potential

contact point i such that d = (d1, d2, . . . , dn) where n is the total number of

potential contacts. Here we use the contact model of Chapter 3 (Larionov

et al. [78]), where surface vertices of one object are constrained to have non-

negative potential values when evaluated against a smooth implicit function

d closely approximating the surface of another object. Interestingly, if we

allow objects some small separation tolerance at equilibrium, we can refor-

mulate this constraint as an equality constraint by using a soft-max [52] or

a truncated log barrier [84]. These types of equality constraints greatly sim-

plify the contact problem and have shown tremendous success in practice.

One disadvantage of log-barrier formulations is that the initial state must

be free of collisions prior to the optimization step in order to avoid infinite

energies and undefined derivatives. In the absence of thin features or risk of

tunneling, it is sufficient to use a simple penalty function to resolve interpen-

etrating geometry. In this work we choose to use penalty-based contacts for

simplicity, however, our formulation is fully compatible with a log-barrier

method coupled with continuous collision detection (CCD) as proposed by
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Li et al. [84]. The idea is to help our solver guide interpenetrating meshes

out of intersecting configurations. We define a cubic contact penalty by

b(x; δ, κ) = κ

{
−(x− δ)3 if x < δ

0 otherwise,

where δ > 0 is the thickness tolerance and κ > 0 is a contact stiffness

parameter that will need to be automatically increased to ensure that no

surface vertices of one object are penetrating the implicit surface of another

at the end of the time step. Here b corresponds to the first non-zero term in

the Taylor expansion of the truncated log-barrier used by Li et al. [84], but

unlike the log-barrier it is well-defined also for negative arguments. The

penalty is applied to each contact point giving us an aggregate contact

energy

Wc(d) =
n∑

i=1

b(di; δ, κ).

Now the contact force can be written simply as the negative energy derivative

f c(q)
⊤ = −∂Wc

∂q
= λ(q)⊤

∂d

∂q
, where λ(q)⊤ = −∂Wc

∂d
(4.1)

is the stacked vector of contact force magnitudes. In effect our contact

formulation enforces the equality constraint Wc(d(q)) = 0. Note that for

λ to represent a true force magnitude, ∂d/∂q must be normalized if it

does not coincide with a distance field Jacobian. In the interest of compute

performance and simplicity, we leave ∂d/∂q as is, although the error is

reduced with denser surface sampling.

4.3.2 Friction

We define the contact Jacobian Jc(q) and tangent basis B(q) over all poten-

tial contact points. Then T(q) = Jc(q)
⊤B(q) is the m× n matrix defining

the sliding basis [84]. In short, this matrix maps forces in contact space to

generalized forces in configuration space.

66



We can now derive the smoothed friction force [52, 84] from first prin-

ciples. For each contact i, MDP postulates that friction force ought to

maximally oppose relative velocity

ff,i(v;µ) = argmax
∥y∥≤µλi

(−v̄⊤
i y), (4.2)

where µ is the coefficient of friction, which limits the friction force1 and

v̄i ∈ R2 is the relative tangential velocity at contact point i. The contact

force magnitude λi is the ith element of λ as defined in Eq. (4.1). We can

solve Eq. (4.2) explicitly with an inclusion

ff,i(v;µ) ∈ −µλi

{
{v̄i/∥v̄i∥} if ∥v̄i∥ > 0

{u ∈ R2 : ∥u∥ ≤ 1} otherwise.
(4.3)

This is commonly referred to as Coulomb friction. Unfortunately, the non-

smoothness around ∥v̄i∥ = 0 calls for non-smooth optimization or root-

finding techniques [21, 48, 69], making this problem numerically challeng-

ing. Another disadvantage of non-smoothness is that it greatly complicates

differentiation of the solver, which can be critical for solving inverse prob-

lems efficiently. We opt to approximate Coulomb friction using a smoothed

model [52, 84]. Since most animations call for relatively short time frames,

we typically do not require absolute sticking. Interestingly, smooth friction

has been proposed in older engineering literature [14, 75, 145] to model hys-

teretic behaviour and alleviate numerical difficulties. A simple smoothing

of Eq. (4.3) can be written as

ff,i(v;µ) ≈ −µλiη(v̄i), (4.4)

where η : R2 → R2 defines the per-contact nonlinearity

η(v̄i) = s(∥v̄i∥)

{
v̄i/∥v̄i∥ if ∥v̄i∥ > 0

0 otherwise,
(4.5)

1Unless otherwise specified, ∥ · ∥ refers to the Euclidean norm.
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Figure 4.1: Examples of smoothing functions sa (left) and sb (right).

and the function s defines the pre-sliding transition. A suitable C1 option

for s is

sa(x; ϵ) =

{
2x
ϵ −

x2

ϵ2
if x < ϵ

1 otherwise.
(4.6)

For a C∞ option, we can define

sb(x; ϵ) =
x

x+ ϵ
. (4.7)

Figure 4.1 illustrates how sa and sb behave for different values of the stick-

slip parameter ϵ. In our experiments, both functions produced reasonably

accurate friction effects.

We can express the nonlinearity in Eq. (4.5) as a function over all

(stacked) relative velocities v̄ ∈ R2n using a diagonal block matrix

H(v̄) =


η(v̄1)

. . .

η(v̄n)

 .
Then the total friction force can be written compactly as

ff (q,v) = −µT(q)H(T(q)⊤v)λ(q), (4.8)
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where λ = (λ1, λ2, . . . , λn)
⊤ is the stacked vector of contact force magni-

tudes.

4.3.3 Volume change penalty

In soft tissue simulation, resistance to volume change is typically controlled

by Poisson’s ratio. This, however, assumes that the simulated body is ho-

mogeneous and void of internal structure. For more complex structures like

the human body, a zonal constraint is a more suitable method to enforce

incompressibility [123]. Compressible objects, however, require a different

method altogether. In this section we propose a physically-based and sta-

ble model to represent compressible and nearly incompressible objects. In

particular, we want to efficiently model inflatable objects like balloons, tires

and sports balls, as well as nearly incompressible objects like the human

body or other organic matter.

We start from the isothermal compression coefficient [99, Section 5.3]

defined by

κv = − 1

V

(
∂V

∂P

)
T

, (4.9)

where V is the volume of interest2, P is internal pressure and the T subscript

indicates that temperature is held constant. For compressible continua like

air in normal conditions, which behaves like an ideal gas, κv = 1/P . For

nearly incompressible continua like water at room temperature, κv ≈ 4.6×
10−5 atm−1 is relatively constant. Assuming rest volume V0 and initial

pressure P0 = 1 atm, we can derive the work W needed to change the

volume of the container to V . For an ideal gas PV is constant, which gives

Wig(V ) = P0

(
V − V0

(
1 + ln

V

V0

))
. (4.10)

2For instance a region occupied by FEM elements or the volume of a watertight triangle
mesh.
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For a nearly incompressible continuum, κv is constant, which yields

Wnif (V ) =
1

κv

(
V0 − V

(
1− ln

V

V0

))
. (4.11)

For details of the derivation see Section 4.3.3.

Unfortunately, both models are undefined for negative volumes, which

can easily lead to configurations with undefined penalty forces. Taking the

second order approximation of Eq. (4.11) gives us

W2(V ) =
(V − V0)2

2V0κv
, (4.12)

which coincides with the second order approximation of Eq. (4.10) when

κv = 1. Thus, our second-order model approximates both compressible and

nearly incompressible continua well for small changes in volume as shown in

Figure 4.2. For larger changes in volume, we recommend modeling Eq. (4.10)

directly, since it also approximates Eq. (4.11) well and volume changes are

not significant in nearly incompressible continua.

To alleviate the approximation error for scenarios that involve more com-

pression (such as in Figure 4.10), we recommend decreasing κv to produce

stronger restorative forces.

The penalty force is then given directly by the negative derivative of

Eq. (4.12) and controlled by the compression parameter κv:

fv(q) = −
(V − V0)
V0κv

∂V

∂q
. (4.13)

This can then be added directly to Eq. (2.2). Incidentally, the Jacobian of

Eq. (4.13) is dense, however, it can be approximated by the sparse term

involving ∂2V/∂q2, which expresses only local force changes. In matrix-

free solvers where only matrix-vector products are required, the complete

derivative can be computed without hindering performance since the full

dense Jacobian is never stored in memory.
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Volume
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gy
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Figure 4.2: Volume change energy. The energy (negative of work) is
plotted for the compressible model in Eq. (4.10) (dotted curve),
the nearly incompressible model in Eq. (4.11) (dashed curve)
and the 2nd order approximate model in Eq. (4.12) (solid curve).
Here V0 = 1 m3, κv = 1 atm−1, and P0 = 1 atm. The quadratic
model approximates both cases, but is ultimately too weak for
excessive compression but too strong during large expansion.
Depending on the use case, it may be necessary to model one
of (4.10) or (4.11) directly.

Volume change penalty formulas

In this section we briefly describe how to derive the volume penalties for

ideal gas and nearly incompressible continua given in Eqs. (4.10) and (4.11)

respectively.

Assuming hydrostatic equilibrium, the mechanical potential of a body

can be expressed as the work done on the system when being compressed or

expanded from V to V + dV .

dW = −PdV,

where P is the pressure in the continuum. Since we simulate objects in an
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atmosphere, the work done on a system is offset by the atmospheric pressure

acting on the system. At the scale of our simulations, the atmospheric

pressure is approximately constant, so the work that can affect the rest of

the simulation is given by

dW = (−P + P0) dV, (4.14)

where P0 = 1 atm is the atmospheric pressure.

Ideal gas. For an ideal gas, Boyle’s law dictates that PV is constant, which

implies that it can be computed from atmospheric pressure and rest volume

PV = P0V0. Thus, from Eq. (4.14), the energy of the system undergoing a

change of volume from V0 to V1 can be written as

W (V1) =

∫ V1

V0

−P (V ) + P0 dV = P0

∫ V1

V0

1− V0
V
dV

= P0

(
V1 − V0

(
1 + ln

V1
V0

))
.

Nearly incompressible continua. Recall the compressibility coefficient κv

defined by Eq. (4.9) for nearly incompressible continua. The pressure change

of a bounded continuum caused by volume change from V0 to V1 can be

expressed in terms of κv as

P (V1)− P (V0) =
∫ V1

V0

∂P

∂V
dV = −

∫ V1

V0

dV

κvV
= − 1

κv
ln
V1
V0
.
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With P0 = P (V0), we can then derive the expression for energy directly as

follows

W (V1) =

∫ V1

V0

−P (V ) + P0 dV =

∫ V1

V0

1

κv
ln
V

V0
dV

=
1

κv

(∫ V1

V0

lnV dV − (V1 − V0) lnV0
)

=
1

κv

(
V0 − V1

(
1− ln

V1
V0

))
.

4.4 Numerical Methods

In this section we outline and motivate methods for solving the non-linear

momentum balance system in Eq. (2.5).

4.4.1 Damped Newton

The momentum balance Eq. (2.5) can be solved efficiently by second-order

root-finding methods like Newton. In the absence of constraints, this can be

seen as a generalization of incremental potential optimization [66], when the

merit function is set to be an energy potential3 W (v) such that ∂W (v)/∂v =

r(v), albeit in that case to maintain a descent direction, ∂r/∂v must be

appropriately modified to remain positive definite.

Since the presence of friction forces precludes a single potential W for

minimization [40], many methods relying on incremental potentials build

special workarounds to solve for exact Coulomb-based friction, including

staggered-projections [69], fixed-point methods [48] and lagged-friction [84].

Others employ non-smooth Newton to find roots of a proxy function [21, 39,

70]. Our method is closest to the penalty-based frictional contact approach

promoted by Geilinger et al. [52]. We extend this idea by using an implicit

sliding basis, which makes our method fully implicit with respect to friction

3While the original incremental potential is intended to be optimized over positions,
the velocity derivatives of all integrators we consider are a constant multiple of positional
derivatives. Thus optimizing over velocity here is equivalent to optimizing over positions.
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and contact. This unlocks the potential of using larger time steps to get re-

sults with good accuracy. For lower resolution examples we use the damped

Newton algorithm as defined in Algorithm 2, where the problem Jacobian

defined by J = ∂r/∂v is a square non-symmetric matrix (see Section 4.5.1).

Assuming that J is invertible in the neighbourhood of the root, for a suf-

ficiently good initial estimate, damped Newton is guaranteed to converge4

[109]. While singular Jacobians can cause problems, in our experiments they

are rare, and often can be eliminated by decreasing the time step in dynamic

simulations. Furthermore, in Section 4.5.1 we show that our method does

not introduce singularities through coupling between elasticity, contact and

friction on a single node.

ALGORITHM 2: DampedNewton
Input:

kmax ← maximum number of Newton iterations

v← previous velocities

Output: vk ← velocity for the next time step
1 v0 ← v /* Initialize velocity */

2 for k ← 0 to kmax do
3 if ShouldStop(r(vk),vk) then
4 break
5 end
6 pk ← −J(vk)

−1r(vk) /* Set search direction */

7 α← LineSearch(vk,pk)
8 vk+1 ← vk + αpk

9 end

4.4.2 Inexact damped Newton

For large scale problems, it is often preferable to use an iterative linear

solver, which can outperform a direct solver when degrees of freedom are

sufficiently abundant. We use inexact Newton to closely couple the iterative

solver with our damped Newton’s method.

Since friction forces produce a non-symmetric Jacobian, we chose the

4If J is also sufficiently regular then convergence is Q-quadratic.
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biconjugate gradient stabilized (BiCGSTAB) algorithm [138] to find Newton

search directions pk. For Jacobian Jk = ∂rk/∂v with rk = r(vk), the search

direction is determined by

∥rk + Jkpk∥ ≤ σk∥rk∥,

where σk = min(∥rk∥φ/∥rk−1∥φ, σ) and φ = (1 +
√
5)/2 to maintain Q-

quadratic convergence [44].

Using BiCGSTAB as the iterative solver additionally allows one to use

forward automatic differentiation to efficiently compute products Jp.

The final inexact Newton algorithm is presented in Algorithm 3.

ALGORITHM 3: InexactDampedNewton
Input:

kmax ← maximum number of Newton iterations

v← previous velocities

c1 ← 10−4

Output: vk ← velocity for the next time step
1 v0 ← v /* Initialize velocity */

2 for k ← 0 to kmax do
3 if ShouldStop(r(vk),vk) then
4 break
5 end
6 σk ← min(∥rk∥φ/∥rk−1∥φ, σ)
7 Find pk such that ∥rk + Jkpk∥ ≤ σk∥rk∥
8 α← 1

/* Backtracking */

9 while ∥r(v + αp)∥ > (1− c1α(1− σk))∥r(vk)∥ do
10 α← ρα
11 end
12 σk ← 1− α(1− σk)
13 vk+1 ← vk + αpk

14 end

For further details on the tradeoffs between inner convergence (of the

linear solver) and outer convergence (of the nonlinear solver), which is man-

aged by σk, as well as discussion about other Jacobian-free Newton-Krylov
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(JFNK) techniques, we refer the reader to Kelley [72].

4.4.3 Contact

To ensure that no penetrations remain (i.e. di > 0 for each contact i) at the

end of the time step we measure the deepest penetration depth ddeepest =

mini(di(q
t+h)), and bump the contact stiffness parameter κ by the factor

b′(ddeepest)
b′(0.5δ) whenever ddeepest < 0, where b′ is the scalar derivative of b. The

same step is then repeated with the new κ. This scheme sets the optimal

contact penalty value found by the Newton scheme to appear for contacts

0.5δ outside the contact surface. As such, in most cases one time step with

an additional contact iteration is sufficient before all contacts are resolved.

Furthermore, κ is never decreased so long as there are active contacts to

avoid oscillations at the contact surface.

The downside of this technique is that it compromises the smoothness of

the simulation. We postulate that in practice, this may not be problematic

in a differentiable pipeline since κ is not changed frequently and subse-

quent differentiable iterations can carry forward the maximal κ to maintain

smoothness.

4.4.4 Compatibility with lagged friction models

Li et al. [84] introduced a robust method to resolve contacts by minimizing

incremental potentials with friction being evaluated using lagged positional

estimates from the previous time step. Here we express their incremental

potential contact (IPC) method as a nonlinear system, and propose a simple

change that will establish more accurate frictional responses. The total force

with lagged friction can be expressed as

flag(q
t,qt+h,vt+h) = fedcg(q

t+h,vt+h) + ff (q
t,vt+h), (4.15)

where fedcg is the sum of elastic, damping, contact and external forces and

ff is the friction force as before. This net force can then be integrated with

an implicit-explicit (IMEX) style scheme. Specifically for BE and TR we
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get

rBE,IPC(v
t+h) = vt+h − vt − hM−1flag(q

t,qt+h,vt+h), (4.16)

rTR,IPC(v
t+h) = vt+h − vt

−h
2
M−1

(
flag(q

t,qt+h,vt+h) + flag(q
t,qt,vt)

)
, (4.17)

respectively. This formulation has the advantage of having a well-defined

antiderivative with respect to vt+h, which can be minimized using com-

mon optimization tools. In this view, IPC effectively solves Eq. (4.16) or

Eq. (4.17) using the proposed log barrier potential as a merit function, CCD

aided line search and Hessian projection. Although this can be done itera-

tively with better estimates for the lagged friction force, this approach has

limitations as demonstrated in Section 4.6.1. Instead, we can establish more

accurate friction in IPC, if we abandon the popular optimization view and

instead solve the original momentum balance problem where friction forces

are resolved implicitly (e.g. replace ff (q
t,vt+h) with ff (q

t+h,vt+h) for BE).

4.5 2D Analysis

To simplify our analysis and better illustrate the problem, consider a simple

2D example. A mass is attached by an idealized spring to the origin resting

on a conveyor belt, which moves left at a constant velocity as illustrated in

Figure 4.3. Using this example we analytically evaluate the conditioning of

single point frictional contacts, and demonstrate potential issues that can

arise in the formulation.

We evaluate our methods on the simple 2D example proposed in Sec-

tion 4.1. We developed the following 2D simulations in the Julia program-

ming language [22] using Jupyter notebooks. The 2D equations of motion

(2.1) for this problem can be written as

Mv̇ = K(q)q−D(q)v + µb′(qy)η(v − vs) + f c(q) +Mg,

where q and v are the 2D position and velocity of the free end respectively,
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vs

k f c

ff

Figure 4.3: Springy rod example in 2D. A rod with spring constant
k is fixed at the top (filled circle) and rests on the belt with
the free end (hollow circle) experiencing a contact force f c. The
belt moves to the left at a constant velocity vs causing a friction
force ff on the free end of the rod.

K = −k(l0−∥q∥)/∥q∥, l0 is the rest length of the spring, f c = (0,−b′(qy))⊤

and g is gravitational acceleration. The momentum balance for BE is then

given by

rBE = M(vt+h − vt) (inertia)

− h
(
K(qt+h)qt+h −D(qt+h)vt+h

)
(elasticity and damping)

− h
(
µb′(qt+h

y )η(vt+h − vs) + f c(q
t+h)

)
(friction and contact)

− hMg (gravity)

= 0,

where qt+h = qt + hvt+h

In this case the gap function is the scalar d(q) = qy, and T is the

projection onto the x-axis.

4.5.1 Jacobian conditioning

First we demonstrate the asymmetry of J = ∂r/∂v for this problem to

illustrate why we need solvers for non-symmetric linear systems. Here we will

investigate backward Euler, however, the same findings should also apply for

other integrators.

When the contact is not activated (i.e. qy ≥ δ in the 2D problem),

both friction and contact forces are zero, reducing the problem to damped
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elastodynamics. In this case it is well known that J is symmetric and often

even positive definite, a thorough eigenanalysis of this case is explored by

Smith et al. [128].

For the activated case (i.e. qy < δ), we will use Eq. (4.7) to analyze

the 2D example. It models sticking, pre-sliding and sliding stages of friction

with a single smooth function.

The derivative of Eq. (2.6) for our 2D problem is a 2× 2 matrix

JBE = Jinactive
BE +

[
Jxx Jxy

Jyx Jyy

]
,

where Jinactive
BE identifies the part without friction or contact. When the

contact is not active, we simply have JBE = Jinactive
BE . For active contacts,

we have

Jxx = −Jyy
µϵ(qy − δ + 1)

2h(ϵ+ |vs|)2
, Jxy = Jyy

µvs
ϵ+ |vs|

,

Jyx = 0, Jyy = −6h2κ

mδ
(qy − δ + 1),

assuming that the velocity at the free end is zero. Here m is the mass of the

free end. Other quantities are as defined in previous sections. These expres-

sions demonstrate a couple of interesting properties of frictional contact:

• Asymmetry of the Jacobian is due only to friction. Frictionless contact

(µ = 0) produces a symmetric system. Optimization based methods

[78, 84] work around this asymmetry using time splitting or explicit

integration, where friction is solved separately from the main elasticity

equations. This is problematic because friction, contact and elasticity

produce comparable impulses for large time steps, especially for large

elastic moduli.

• When vs vanishes (i.e. sticking), Jxx becomes very sensitive to the

stick-slip parameter ϵ, which suggests potentially poor conditioning.

We can symbolically compute the singular values of JBE to evaluate how

the conditioning of this matrix depends on h, κ, δ, and ϵ parameters. As
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mentioned before we are especially interested in the case where vs = 0, the

sticking case, where conditioning is poor. The following properties can be

computed symbolically:

lim
κ→∞

cond(JBE) = max

(
2hϵ

δµ
,
δµ

2hϵ

)
(4.18)

cond(JBE) ∈ O(min(1δ , κ)) as δ → 0 and κ→∞ (4.19)

cond(JBE) ∈ O(1ϵ ) as ϵ→ 0 (4.20)

In consequence, we know that:

1. For arbitrarily large κ, the conditioning of JBE is bounded above by a

function of δ by Eq. (4.18).

2. Conditioning will not degrade further when κ is increased if κ > 1/δ

by Eq. (4.19).

3. cond(JBE) can grow linearly with 1/ϵ by Eq. (4.20).

This analysis further expands on the tradeoffs introduced by the smoothed

friction formulation. We can use these relationships to pick appropriate

values of ϵ and δ for a particular application.

4.5.2 Stability

Our 2D problem can exhibit instabilities, two of which we will address here.

We can rewrite the balance Eq. (2.1) with v = q̇ as a single system

where u = (q,v)⊤ and

u̇ = F(u) =

[
v

f(q,v)

]
.

Although F is non-linear, we can evaluate the local stability of the system

by analyzing the eigenvalues of ∂F/∂u [12, Ch. 2]. The presence of positive

eigenvalues suggests local areas of instability.

To start, let’s consider the case where q = (0,−1)⊤, meaning the rod is

compressed and vertical, v = (0, 0)⊤, and the conveyor belt is still, vs = 0.
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This scenario demonstrates an unstable equilibrium or bifurcation, which is

bound to generate a positive eigenvalue. We further assume no damping

(i.e. α = β = 0) to simplify analysis. The four eigenvalues of ∂F/∂u in this

scenario are−3δκµ±
√

(4
√
2− 4)kmϵ2 + 9δ2κ2µ2

2mϵ
,± i
√
k + 6κ√
m

 . (4.21)

Here we see that the right pair of eigenvalues are purely imaginary, while

on the left, there is a single positive eigenvalue which vanishes as ϵ→ 0. In

this case smaller values of ϵ will improve the stability of the problem but

will not completely stabilize it.

This type of scenario is not particularly special to our formulation but

it demonstrates that our friction formulation will not completely eliminate

this type of instability.

Now suppose that q = (−1,−1+ δ)⊤, meaning the rod is on the left side

and δ away from the contact surface. As before, v = (0, 0)⊤ and vs = 0.

In this case the contact is transitioning between active and inactive states.

Assuming the contact is still active, we can compute the eigenvalues of

∂F/∂u: ±
√√√√ k

m

(√
2

(δ − 1)2 + 1
− 1

)
,±i
√
k

m

 . (4.22)

Here we notice that while the right pair of eigenvalues are purely imaginary

as before, one of the left eigenvalues is positive for all 0 < δ < 2. This is

a case of instability that is uniquely characteristic of the smoothed friction

formulation.

Configuring the rod spring to start in the starting configuration giving

eigenvalues (4.22) such that the free end repeatedly goes in and out of con-

tact, we plot the eigenvalues of ∂F/∂u against the shaded unstable region

for BE in Figure 4.4 with h = 4e-5 s. Increasing the time step, will re-

duce the number of eigenvalues in the unstable region for BE as errors are
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Figure 4.4: Friction instability. Eigenvalues of ∂F/∂u are plotted on
the complex plane against the stability region of BE with h =
4e-5 s. Each frame of the simulation corresponds to 4 eigenval-
ues, plotted here in 4 different colors, although some eigenvalues
lie well outside the plotted region. Here k = 10 N/m, m = 1
kg, µ = 1.2, κ = 100 N/m, δ = 0.4 m and ϵ = 0.01 m/s so that
the free end of the rod repeatedly goes in and out of contact.
This transition causes eigenvalues to fall into the unstable re-
gion, however it does not destabilize the overall simulation.

damped and the stability region expands, however, for non-L-stable integra-

tors like TR, the errors are not damped with time step increase and so more

eigenvalues remain in the unstable region throughout the simulation.

In the next instance we disable damping and set vs = −0.5 m/s, k = 15

N/m, m = 1 kg, µ = 0.2, κ = 103 N/m, δ = 0.01 m, and ϵ = 0.01 m/s to

demonstrate how the 2D elastic rod behaves when subject to smooth fric-

tional contacts. In Figure 4.5 we plot the kinetic energy of the system as h is

decreased to reveal the high frequency oscillations that characterize smooth

frictional contact. Consider the latter part of the animation in Figure 4.5,
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Time
(s)

Figure 4.5: Kinetic energy of the 2D rod example is plotted for differ-
ent time steps. High frequency oscillations emerge as time step
h is decreased. We used TR-BDF2 here, although other con-
verging integrators exhibit similar behaviour. TR will exhibit
the high frequency oscillations even for h = 0.04 s, while BE
requires time steps as low as h = 1e-4 s before these artifacts
become visible.
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when the rod is dragged. As the conveyor belt pulls on the rod, the elastic

force pulls the mass up, thus decreasing the normal force experienced. As

a result, the friction force is decreased and eventually the rod accelerates

in the positive direction. This causes the “large” oscillations in Figure 4.5.

Now because our contact is enabled by a smooth but steep potential, the

rod is effectively bouncing up and down at a very high frequency, which

causes high frequency changes to the friction force. This causes the “small”

oscillations.
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4.6 Results

All examples were run on the AMD Ryzen Threadripper 1920X CPU with

12 cores, 24 threads at 3.7 GHz boost clock and 32 GB RAM. We used

Blender 2.9 [112] and ParaView 5.7 [6] for all generated images and videos.

For Algorithm 2 we used the Intel MKL sparse LU solver to solve the square

non-symmetric linear system on line 6. In the following results Algorithms 2

and 3 are dubbed “Direct” and “Iterative”, respectively, since the former

uses a direct linear solver and the latter uses an iterative linear solver.

4.6.1 Friction accuracy

With the following examples we demonstrate two scenarios where lagged

friction causes large deviations from an expected accurate and stable friction

response.

Block slide

In this example we let a stiff elastic block slide down a 10 degree slope

expecting it to stop for µ = 0.177 > tan(10◦) after sliding for a total of

xT = 0.769 m for T = 15.38 seconds (see supplemental document for details

on the experiment).

In Figure 4.6 we demonstrate that our method produces consistent stop-

ping across a variety of time step sizes using BE and TR time integration.

We compare against a state-of-the-art smoothed friction method [84] using

a lagged friction approach to show that it fails to establish consistent stop-

ping with BE, and fails to stop with TR altogether after 50 seconds. We

reproduce the lagged friction method in our simulator to demonstrate that

TR can be used to generate reliable stopping if the equations of motion are

correctly integrated as in Eq. (4.17). Our method produces a more accu-

rate stopping distance using TR than IPC does using BE even after using

multiple fixed point iterations.
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(a) Total displacement travelled by the block before coming to a stop. With BE
and multiple fixed point iterations the lagged friction approach can produce a reason-
able approximation of the stopping behaviour, however, the approximation does not
converge to the true solution. Our method produces a more accurate estimate of the
true behaviour with BE, while TR produces a better estimate than lagged friction at
h = 0.1 s and lower. With lagged friction, the TR method presented in Eq. (4.17)
produces a more accurate result than IPC since contact is handled together with other
implicit forces.

(b) Time taken by each block to come to a stop. With BE, our method produces
a more accurate approximation to the true stopping time for all but the largest time
step. In contrast, lagged friction fails to converge to the true stopping time under
multiple fixed point iterations. With TR, the approximation is not as accurate as
with BE, although still closer to the true value than lagged friction using BE. With
TR, lagged friction does not produce a reliable stopping time, even under refinement.
Using TR as implemented by IPC, the box does not stop after 50 s for any time step.

Figure 4.6: Block slide. Comparisons of analytic stopping conditions
of a sliding block to numerical results.
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Bowl grasp

Control over the friction coefficient is particularly important in grasping

scenarios since grasped objects are often delicate. This means that friction

forces involved in lifting are often close to the sliding threshold.

As shown in Figure 4.7, an upside down bowl is lifted using 3 soft pads

to compare sticking stability of lagged friction proposed in Eq. (4.16) against

a fully implicit method from Eq. (2.6). The bowl is successfully picked up

and stuck to the pads for a range of time steps when using the implicit

method, however it slips for different time step values with lagged friction.

The height of the bowl is plotted in Figure 4.7b for each method and time

step combination.

Ball in a box

A rubber ball placed inside an elastic box has an initial spin of 4800 rota-

tions per minute and an initial velocity set to v⃗0 = (−0.923,−0.385, 0). In

Figure 4.8, we demonstrate how our fully coupled TR integrator produces

more stable dynamic simulations when compared to the decoupled TR as

proposed by Li et al. [84]. This scenario is simulated with both methods

for 800 frames at h = 0.01 s with comparable damping parameters. The

TR implementation used by IPC blows up, whereas in our formulation the

energy is eventually dissipated as expected. In Figure 4.8b, we simulate the

ball and box separately with each method using the same damping parame-

ter as in the final simulation from Figure 4.8a. This shows that damping is

comparable with both methods, which means that the reason for blowup in

IPC is not due to integration of elasticity equations alone, but indeed due

to the loose coupling between elastic and contact terms.

4.6.2 Performance

In this section, we show how various combinations of volume preservation

and frictional contact constraints can affect the performance of the simu-

lation. In addition, we compare Algorithms 2 and 3 in performance and

memory usage.
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(a) The bowl is simulated using lagged friction from Eq. (4.16) (top row) and our
fully implicit method (Eq. (2.6), bottom row). The chosen frames between 1 and 150,
are frames 35, 40 and 100, at which point the bowl slips out for time steps h = 0.005
s, 0.0025 s, and 0.00125 s respectively for the lagged method. Using fully implicit
integration, the bowl sticks even at the largest time step h = 0.005 s as shown.

(b) The height of the bowl is plotted against frame number time step h is varied.
Here the bowl slips for the lagged friction method, whereas the fully implicit method
maintains stable sticking for every time step, hence all plotted lines overlap.

Figure 4.7: Bowl grasp. An upside down bowl is lifted up using 3 soft
pads. Here ρ = 1000 kg/m3, E = 600 KPa, and ν = 0.49 for
the pads and ρ = 400 kg/m3, E = 11000 KPa and ν = 0.1 for
the bowl, with friction coefficient set to µ = 0.65 between them.
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(a) The TR formulation proposed in IPC is unstable (top row) whereas our method
produces a dissipative scenario (bottom row) even with a slightly weaker damping as
shown in Figure 4.8b.

(b) Damping ratio of 0.02 is selected for IPC, and damping parameter of 0.1 Hz is
set for our model. In both cases Rayleigh damping is used. The ball (top) and the
box (bottom) are simulated individually with both methods and centroid heights are
plotted to ensure the that oscillation amplitudes with TR as implemented by IPC do
not exceed those generated by our method.

Figure 4.8: Ball in a box. A spinning ball bounces inside an elastic
box. Here ρ = 10000 kg/m3, E = 500 KPa, and ν = 0.1 for the
box and ρ = 500 kg/m3, E = 50 KPa and ν = 0.45 for the ball,
with friction coefficient set to µ = 0.1 between them.
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Tube cloth bend

The inexact Newton Algorithm 3 shines particularly in scenarios with nu-

merous contacts, such as with tight-fitting garments, where the entire gar-

ment is in contact with a body. Here we simulate a simplified scenario of

a tube cloth wrapped around a bending soft object resembling an elbow

or knee as depicted in Figure 4.9. Table 4.1 shows the corresponding tim-

ing results, which indicate that inexact Newton performs much better than

the damped Newton algorithm employing a direct solver. Furthermore, the

performance gap becomes large when the number of elements is increased.

Interestingly this data also indicates that larger friction coefficients cause a

bigger bottleneck for the solve compared even to stiff volume change penal-

ties (indicated by small κv).

3K Triangles

5K Tetrahedra

8K Triangles

30K Tetrahedra

Figure 4.9: Tube cloth bend. A cylindrical garment is wrapped around
a bending capsule. Lower resolution example is shown at the top
row and higher resolution at the bottom row. The first column
shows the initial configuration, second column shows the end
result with low friction (µ = 0.2), and the last column shows
the end result with high friction (µ = 0.8).
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# Elements µ Solver Type κv Time Memory Volume Loss

3K Tris
5K Tets

0.2
Iterative - 4.81 1.84 GB 0.962%
Direct - 22.1 6.51 GB 0.962%

0.8
Iterative - 12.7 1.91 GB 0.962%
Direct - 25.6 7.09 GB 0.962%

8K Tris
30K Tets

0.2
Iterative - 8.59 830 MB 2.55%
Iterative 4.6e-5 12.2 858 MB 2.44e-4%

0.8
Iterative - 51.6 625 MB 2.57%
Iterative 4.6e-5 53.2 918 MB 2.44e-4%

Table 4.1: Tube cloth bend performance data. Time is measured in
seconds per frame and memory refers to total memory growth
during the simulation as reported by Houdini’s performance mon-
itor. Simulations without volume change penalty have κv set to
−.

Ball squish

A hollow ball at various resolutions (1K, 55K and 160K elements) is pressed

between two flat planes. As a result the ball experiences volume loss. To

preserve some of the volume we simulate the compression with compression

coefficients κv = 1 (e.g. a ball filled with air) and κv = 0.01 (e.g. a ball

filled with water). In the latter case we expect significantly less volume loss,

which is reflected in our experiments as shown in Table 4.2. Furthermore,

we note from Table 4.2b that scenarios with small κv favour the “Iterative”

method. In Table 4.2c we see that this is true whether J is sparsely approxi-

mated (“Inexact”) or not (“Exact”). In contrast, stiffer scenarios prefer the

“Direct” method due to worse system conditioning.

4.6.3 Real world phenomena

In the following example we show how our simulator can reproduce defor-

mations captured in the real world.
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# Elements 1K 55K 160K

Direct 0.354 (0.228) 15.9 (1.69) 61.0 (4.26)
Iterative 0.391 (0.081) 31.9 (0.719) 111 (1.92)

Volume loss 33.6% 27.8% 27.7%

(a) E = 100 KPa, κv = 1.

# Elements 1K 55K

Direct 1.08 (0.478) 89.1 (2.03)
Iterative 0.463 (0.214) 42.6 (0.884)

Volume loss 0.49% 0.36%

(b) E = 100 KPa, κv = 0.01.

κv = 1 0.01

Direct Exact J 0.832 (0.393) 0.871 (0.672)
Direct Inexact J 0.354 (0.228) 1.08 (0.478)
Iterative 0.391 (0.081) 0.463 (0.214)

(c) E = 100 KPa, for 1K elements.

# Elements 1K 55K 160K

Direct 0.312 (0.388) 8.28 (1.52) 25.5 (4.14)
Iterative 0.593 (0.097) 28.3 (0.732) 56.2 (2.62)

Volume loss 74.3% 74.6% 75.0%

(d) E = 1000 KPa with no volume preservation constraint.

Table 4.2: Ball squish timings, memory usage and volume loss. A
hollow ball is squished between two flat rigid plates at time step
h = 0.001 s. Timings are given in seconds per frame and aver-
aged over 804 frames. The memory usage measured in GB over
the entire simulation sequence is shown in parentheses. Volume
loss is computed as the change in volume between frames 1 and
804 as a percentage of initial volume inside the ball. Each ta-
ble specifies the number of elements, Young’s modulus E and
compression coefficient κv where applicable. Here we compare
how the performance characteristics of our “Direct” and “Itera-
tive” methods change when problem stiffness and κv is varied for
different mesh resolutions.
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Figure 4.10: Highspeed tennis ball collision. Simulated ball (top row)
is compared against a real ball video reference [11].

4.6.4 Tennis ball

Tennis ball dynamics is a prime example of all methods proposed in this

chapter. We launch a tennis ball at a wall at 100 mph (44.704 m/s) to

reproduce accurate slow motion deformation. Tennis balls are typically

pressurized to approximately 1 atm above atmospheric pressure to increase

longevity and to produce a livelier bounce during play. In Figure 4.10 we

show how deformation changes when the ball is pressurized and compare the

result with live footage. The simulation contains 100K tetrahedra and 92K

vertices. The ball is hollow with a stiff inner core (E = 6 MPa, ν = 0.4995

and ρ = 934 kg/m3) and a light outer felt material (E = 5.4 MPa, ν = 0.3

and ρ = 4.69 kg/m3). The volume change penalty is applied to the interior

of the ball. This 1000 frame simulation took 4.89 seconds per frame and a

total of 11.33 GB in memory.

Next, a tennis ball is dropped from a 254 cm height to evaluate its bounce

with and without pressurization. We show how pressurization and choice of

integrator can drastically affect the height of the bounce in Figure 4.11.

4.6.5 Tire wrinkling

We model an inflated tire used by top fuel dragsters to show the folding

phenomenon at the start of the race. The tires are deliberately inflated at

a low pressure of 0.68 atm above atmospheric pressure, which allows them
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Figure 4.11: Tennis ball drop. A tennis ball dropped from a 254 cm
height, is simulated using different integrators. Here, BE and
BDF2 produce a much lower bounce than either TR-BDF2
or SDIRK2 methods across a range of different time steps.
Higher-order integrators are defined in the supplemental doc-
ument.

to better grip the asphalt for a better head start. As a result the soft tire

tends to wrinkle as the wheels start to turn. This phenomenon allows for

a larger contact patch between the tire and the ground for better traction,

which translates to a larger acceleration. In Figure 4.12 we demonstrate

this phenomenon in simulation with a shell model tire inflated using our

volume change penalty. The outer side of the tire is initially stuck to the

ground and then dragged while maintaining consistent contact. Accurate

simulation of stick-slip transitions of the tire is critical in determining its

performance since traction transfers torque into forward acceleration of the

vehicle, which ultimately determines the outcome of a race. The tire is

simulated using 18K triangles and 9K vertices. The tire mesh is split into a

stiffer outer part that is in contact with the ground and a softer inner part

where the label is printed. Here µ = 0.8, and ν = 0.49 everywhere, while

E = 400 KN/m, ρ = 200 kg/m2 and bending stiffness set at 0.1 on the outer

part, and E = 200 KN/m, ρ = 50 kg/m2, and bending stiffness set at 0.01
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on the inner part. The simulation ran with h = 0.00125 s for 3.63 seconds

per frame using the damped Newton solver.

Figure 4.12: Dragster tire wrinkle. A soft tire spins against the
ground with a large friction coefficient, causing the rubber to
wrinkle.

4.7 Conclusions and limitations

Smooth contact. An important detail of our formulation is that it requires

a smooth contact surface representation in order to guarantee local conver-

gence of Newton’s method. This also implies that for each step the collision

detection algorithm must capture all potential collisions within distance δ.

Otherwise, a collision detected after it has become closer than δ away from

the contact surface will cause a discontinuity in contact forces. This may

occasionally cause oscillations in Newton’s iterations if the root lies near the

discontinuity.

Local minima. Solving for roots of nonlinear momentum equations allows

one to resolve friction forces more accurately, however, this comes with a
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trade-off. Optimization theory allows one to reliably find a descent direction

even when the objective Hessian is indefinite via projection or filtering tech-

niques. Although computing the descent direction for finding roots of non-

linear equations allows one to use the entire unfiltered Jacobian, global con-

vergence can only be theoretically guaranteed when the Jacobian is bounded

on the neighbourhood of the initial point. For stiff systems, this assumption

can become problematic, although the practical implications are unclear.

Hydrostatic equilibrium. Our volume change penalty model expects hydro-

static equilibrium, which may not always be a good approximation given

the rate of change of volume during a simulation. For quickly deforming ob-

jects like in our tennis ball and tire wrinkling example, some details of the

deformation may be missing due to this approximation. This is because the

object deforms faster than the air moves inside the volume, creating non-

uniform pressure distribution throughout the volume. The comparison of

our hydrostatic model to a fully dynamic fluid simulation remains as future

work.

In conclusion, we presented a fully implicit method for simulating hy-

perelastic objects subject to frictional contacts. This method generalizes

the popular optimization framework for simulating hyperelastics with con-

tact and lagged friction potentials. We demonstrate how integrators like

trapezoid rule or higher order integrators can be applied in our method as

well as in IPC-style frameworks. Our method addresses the lack of friction

convergence in lagged friction formulations by evaluating contacts, friction

forces as well as tangential bases implicitly.

Furthermore, we propose a physically-based volume change penalty that

can be used to simulate compressible as well as nearly incompressible solids

in a single framework without additional complex constraint solvers.

Our system is entirely smooth, featuring unique gradients, which are

ideal for differentiable simulation.
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Chapter 5

Cloth parameter estimation

5.1 Introduction

Clothing plays an important part in human culture and self-expression. Tra-

ditional fashion houses are becoming more and more aware of the virtual

landscape and are experimenting with virtual collections in the metaverse

in addition to real-world fashion lines and virtual try-on. Virtual clothing

items have reduced production costs and time to market. To reproduce fa-

miliar experiences and opportunities for self-expression in the virtual world,

we need the ability to simulate a large variety of different types of clothing

made from vastly different materials and structures. Unfortunately, creat-

ing realistic clothed human animations currently involves hours of tweaking

simulation parameters and expert knowledge to obtain the desired clothing

look.

In Chapter 3, we introduced a method for handling contact on smooth

objects which allows for high fidelity sliding behaviour and permits differen-

tiable contact constraint formulations. In Chapter 4, we further smoothed

the friction curve making the whole simulation pipeline differentiable, and

addressed the resulting accuracy limitations. This work produces a solid

foundation for differentiable simulation of objects subject to high fidelity

frictional contacts. However, the specific algorithms and material models

we chose are not efficient enough for many inverse problems. Fortunately,
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our chosen frictional contact formulation can, in theory, be solved by any al-

gorithm for solving nonlinear systems, although the efficacy of specific algo-

rithms remains to be demonstrated. In this chapter, we divert our attention

towards an application of differentiable simulation to further motivate the

direction of the preceding chapters, however we use a simpler and more effi-

cient simulation algorithm. Here, we leave the extension to resolve frictional

contacts as future work.

With this project, we aim to reduce the time and cost required to create

realistic cloth simulations of real-world materials. While much of the effort

in building simulators targets increasing numerical accuracy and minimizing

computation time, we instead focus on improving the realism of an existing

real-time cloth simulation method. To that end, we are the first to present

a material estimation pipeline leveraging differentiable position-based sim-

ulation of compliant constrained dynamics [95] and easy to reproduce cloth

captures. Capturing cloth samples is often difficult to control due to environ-

mental, material shape memory, and hysteresis effects. Small perturbations

can lead to significantly different cloth equilibrium states, which typically

makes the optimization heavily biased towards the specific captured sam-

ple of the fabric. To overcome these limitations we introduce the following

contributions:

• A novel robust objective function that operates in frequency space

and is able to capture material-specific behaviour, independent of the

current cloth wrinkle state.

• A simplified pipeline for estimating static cloth material properties

that is decoupled from the real-world capture system through a tem-

plate registration process.

• A real-world validation of XPBD cloth simulation with numerical com-

parisons of simulated results and captured scans.

• A set of material parameters for the standard StVK cloth material

model for three distinct common materials.
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5.2 Related work

Given the high relevance of virtual textile simulation both in research and

manufacturing, material estimation has been a topic of investigation in the

research community [91] and industry [27, 35, 113].

Material parameter estimation has been a focus point in computer

graphics in recent years. While some techniques address the full scope of

dynamic simulation parameters using video sequences [23], we focus instead

on elasticity, which can be inferred from static captures of deformed cloth.

Wang et al. [143] have proposed a non-standard piecewise material model

and fit 39 parameters to a set of sparse correspondences. While sophisti-

cated, their scheme can exhibit unlikely Poisson’s ratios below zero or above

one. Prior work focusing on mass-spring and diagonalized StVK models

[103] produce promising parameter estimations, but at the cost of requiring

a complex and expensive capture setup. Furthermore, their method omits

the Poisson effect, which greatly limits the applicability of their results in

modern cloth simulators. Both works employ nodal positions to estimate

approximation error, which makes their methods sensitive to wrinkles in

captured data. Clyde et al. [36] propose a more sophisticated non-linear

material model to better fit existing standard ASTM measurements in large

deformation scenarios. Some commercial hardware like Fabric Analyzer by

Browzwear [27] or CLO Fabric Kit 2.0 [34] used for estimating fabric prop-

erties are often coupled with proprietary software to infer the correct pa-

rameters for the corresponding simulation software. Similar systems for

estimating fabric parameters are also developed in academia, where addi-

tional cameras and custom clamps can allow for a wider range of materials

[59]. In contrast, we focus on improving the optimization method to handle

data coming from non-standard and potentially cheaper setups. A different

line of work attempts to estimate cloth simulation parameters using neural

networks from a static drape [65] or from videos [146]. In another line of

work, the mismatch between simulation and observation is expressed using

stochastic models to infer an estimate for simulation control parameters that

can more closely resemble physical material properties [43, 122].
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Differentiable simulation and system identification has been in-

vestigated in recent research [86, 119] to infer material parameters from

observations [42, 62, 64, 130]. Another topic of focus has been bringing real

objects into the virtual world using sparse observations and interaction of

the object with its environment [31, 144].

Cloth simulation has been a topic of research in computer graphics

for many decades. Starting from the earlier work [18], many improvements

have been proposed to increase accuracy, stability and performance [24, 87,

95, 107, 116, 133].

In summary, the research field has made great progress while several

issues still remain. Deeply intertwined pipelines of closely coupled capture

and optimization systems complicate the combination of different capture

and optimization techniques. Furthermore, multiple prior works use complex

capture setups that are difficult to scale. The use of absolute positions in the

objective function and combined bifurcation in bending produce numerous

local minima, which leads to possibly various valid configurations for the

same material. Moreover, many techniques are difficult to generalize to

other solvers, because they employ non-standard material models [36, 143].

In this work, we leverage position-based simulation of compliant dynamics,

also known as extended position based dynamics (XPBD) [95], see Section

5.3.3.

5.3 Method

Our goal is to estimate the material properties needed for the cloth simu-

lator to represent particular cloth materials as realistically as possible. To

achieve this, we develop a pipeline with three independent stages made from

four components as visualized in Figure 5.1. Initially, a capture system gath-

ers point or mesh data of a deformed rectangular cloth swatch in various

configurations. Then, a template mesh is registered to the captured data us-

ing a landmark registration technique: the non-rigid iterative closest point

(NR-ICP). Finally, the registered mesh is compared to a simulation of the

template mesh, and an optimal set of parameters is found to align both as
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Figure 5.1: Parameter estimation pipeline. With our pipeline, we
decouple the cloth capture (left) from the parameter optimiza-
tion (middle-right) using NR-ICP mesh registration (middle-
left). The optimization pass is able to handle wrinkled cloth,
which greatly simplifies the capture process. With the opti-
mized parameters γ, we generate realistic full-body cloth simu-
lation (right) bypassing laborious manual parameter picking.

Figure 5.2: Cloth capture. Our simple cloth capture system records
the cloth swatch under different force applications to drive the
optimization.

closely as possible by using least squares optimization.

5.3.1 Capture system

We propose a lightweight cloth capture setup that can be easily reproduced

with minimal cost. Cloth swatches are suspended using clamps that apply a

controllable external force through weights, see Figure 5.2. The images are

processed using Agisoft Metashape [5] to produce a high-resolution texture

mapped 3D mesh. A free and open-source alternative is Meshroom [55].

The swatch is stamped with a regular grid pattern to provide landmarks for
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Figure 5.3: Registration. Capture setup (left), scanned mesh (mid-
dle), and registered mesh (right) with magnified regions in the
insets.

the registration process described below.

5.3.2 Template registration

In contrast to prior art, our simulation targets are decoupled from the cap-

tured scans through mesh registration, see Figure 5.3. We create a trian-

gulated regular grid mesh representing the simulated cloth swatch. This

template is then registered to the scan by pairing vertices of the grid with

landmarks on the scanned mesh via the NR-ICP method [82]. Vertices that

are not aligned with the stamped grid pattern are projected along the mesh

normal towards the surface of the scanned mesh to improve the position

estimate in the normal direction. While more accurate methods have been

developed for establishing dense correspondences between meshes, we stress

that any stage of our pipeline – including template registration – is loosely

coupled and can be replaced independently.

5.3.3 Simulation

XPBD is a recent constraint-based simulation algorithm that is often more

stable and efficient when compared to expensive nonlinear solvers like New-

ton’s method, which we used in previous chapters. It uses an iterative Gauss-

Seidel solution for the linearized equations of motion. The method can be

easily parallelized [51] and implemented on hardware such as multi-core
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CPUs and GPUs, enabling interactive or real-time simulations on common

modern hardware. While XPBD converges to the same result as Newton’s

method with spatial and temporal refinement, it can take significantly more

iterations, especially for stiffer materials. Empirically, we found that stiff-

nesses exhibited in our experiments are sufficiently low such that XPBD can

significantly outperform Newton solvers.

The method aims to solve Newton’s equations of motion

Mẍ = −∇U(x), (5.1)

where x ∈ R3n encodes n vertex positions (of the cloth mesh in this case)

and M is the mass matrix computed from element volumes and constant

material density ρ. The energy potential U(x) needs to be specified in terms

of a vector of constraint functions C = [C1(x), C2(x), · · ·, Cm(x)]⊤ as

U(x) =
1

2
C(x)⊤α−1C(x), (5.2)

where α is a block diagonal compliance matrix. Any energy that can be

written this way is suitable for XPBD. Using implicit Euler time integration,

the XPBD algorithm reduces to solving for the constraint multiplier updates

∆λ with

(∇C(xi)
⊤M−1∇C(xi) + α̃)∆λ = −C(xi)− α̃λi, (5.3)

where α̃ = α
∆t2

, followed by a position update

∆x = M−1∇C(xi)∆λ. (5.4)

The system in Eq. (5.3) is typically solved using Gauss-Seidel- or Jacobi-style

updates.

Elasticity model

We employ an orthotropic StVK membrane energy model along with simple

discrete bending [20] for modelling cloth. This model suggests a per-element

103



inverse compliance matrix of the form

α−1
△ = A

C00 C01

C01 C11

C22

 ,
where A is the area of a single triangle and Cij are the compliance coeffi-

cients. The constraint function for each triangle is then defined to be the

Green strain ϵ in Voigt notation

C△(x) = (ϵuu, ϵvv, 2ϵuv)
⊤, (5.5)

where subscripts u and v indicate warp and weft directions, respectively.

With orthotropic Young’s moduli Eu, Ev for modelling distinct warp and

weft behaviour of the fabric, Poisson’s ratios νuv, νvu and shear modulus µ,

we haveC00 C01

C01 C11

C22

 =
1

1− νuvνvu

 Eu νvuEu

νuvEv Ev

µ(1− νuvνvu)

 . (5.6)

Note that this matrix is symmetric since νvuEu = νuvEv and the Poisson’s

ratio νvu corresponds to a contraction in direction u when an extension is

applied in direction v. In the following sections, we abbreviate νuv = ν

whereas νvu is computed from ν,Eu, and Ev.

The bending constraint [20] is defined for each pair of adjacent triangles

(x1, x3, x2), (x1,x2,x4) as the angle strain

Cbend = arccos

(
x2,1 × x3,1

∥x2,1 × x3,1∥
· x2,1 × x4,1

∥x2,1 × x4,1∥

)
− ϕ0,

where ϕ0 is the rest dihedral angle and xi,j = xi − xj are edge vectors

between vertices i and j. The inverse compliance matrix is then given by

the scalar bending stiffness: α−1
bend = [b].
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Differentiable simulation

To use gradient-based optimization with this compliant constraint formula-

tion, we compute the gradient with respect to the material parameters. Both

bending energy and StVK membrane energy are differentiable. It suffices to

compute the derivative of the position update in Eq. (5.4), which involves

differentiating through Eq. (5.3). Derivatives are computed analytically and

accumulated in tandem with the Gauss-Seidel or Jacobi iterates. We must

compute ∂∆x/∂γ where γ is the set of parameters we aim to recover, which

we define in the next section.

5.3.4 Estimating elastic material parameters

In this section, we describe our method for finding a set of parameters γ

required to reproduce a cloth shape captured under the influence of external

forces. We focus on estimating static elasticity parameters that define the

stress-strain relationship. We chose to use a dynamics simulator to find

quasi-static solutions for two reasons. First, the inertia term in dynamics

equations can be an effective method to speed up convergence to quasi-

static solutions. Second, in future work we can easily extend this system

to estimate dynamics parameters like friction or damping, which define how

cloth behaves in motion.

Optimization problem

As output from the capture pipeline, we obtain a cloth mesh in a deformed

configuration at rest. We introduce shape descriptors s that represent the

cloth’s shape in different ways as in Eq. (5.9). Below, starget is used to

describe the target shape. To obtain more information about the stress-

strain relationship in the material and to resolve global scaling ambiguities,

we additionally use force data from some of the boundary nodes. While other

works have used full force vectors, we opt to capture only force magnitudes

ftarget to avoid the need for complex and costly setups necessary to collect

accurate directional forces. We then match the corresponding shape ssim

and boundary forces fsim of a simulation to the target by finding suitable

105



material properties. In general, we can stack as many meshes as needed into

s and f .

We optimize directly over the compliance coefficients and bending pa-

rameter by choosing the parameter set to be

γ := (C00, C11, C01, C11, b), γ ∈ Γ, (5.7)

where Γ is a rectangular constraint set of feasible material parameter combi-

nations. The chosen parameter set γ is a better candidate for optimization

compared to Young’s moduli and Poisson’s ratio due to its good relative scal-

ing. To penalize unrealistic Poisson’s ratios ν above 1, we add the following

penalty

Wν = max(0, ν − 1).

Putting everything together forms our final optimization problem

min
γ∈Γ
∥rsim(γ)− rtarget∥2 + sνWν , (5.8)

where r⊤ = (s⊤, f⊤) is the vector of stacked shape descriptors s and bound-

ary force magnitudes f . Here, rsim corresponds to a simulation after N

timesteps of a quasi-static XPBD solve initialized to the target vertex po-

sitions, whereas rtarget are the shape descriptors and measured force mag-

nitudes of the registered mesh as described in Section 5.3.2. We weigh the

Poisson penalty high with sν = 1e8. To solve Eq. (5.8), we employ the Ceres

non-linear least squares solver [4].

Shape descriptors

Many prior methods rely on precise control over cloth swatches to measure

specific parameters [36, 103, 143]. In particular, it is convenient to produce

deformations that are affected by just one or a few material parameters.

For instance, the bending angle in a piece of cloth, as it hangs from the

edge of a table, is determined by the bending parameter while being largely

insensitive to changes in other stiffness parameters. Unfortunately, it is
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Figure 5.4: Wrinkle bifurcation: two valid cloth configurations with
contrary wrinkle patterns shown from above (top) and side (bot-
tom). The same cloth swatch is pulled with the same force at
opposite corners.

difficult to design experiments that isolate material properties like shear

stiffness and Poisson’s ratio, since cloth tends to buckle in such scenarios

producing wrinkles that inherently couple bending with other parameters.

Due to the bifurcation behaviour of wrinkling, deformed cloth can reach

distinct equilibrium states depending on the deformation trajectory, initial

conditions, and material shape memory effects. Consider Figure 5.4 with

a square piece of cloth pulled at opposing corners for one example of such

ambiguity in stable equilibrium states. Since real-world cloth can exhibit

bias towards a particular wrinkle pattern, the example cloth swatch wrinkles

in the same way independent of its orientation. When the cloth is flipped

upside down, the pattern flips as well from a viewer perspective. However,

this ambiguity poses a challenge for parameter optimization, because this

effect is difficult to capture in simulation. In this case, simulated cloth

will approach the same observed wrinkle pattern due to gravity. Here, naive

position-based metrics will result in a very different value for both valid cloth

configurations. Another example for ambiguity is visualized in Figure 5.6

where simulating the same material with varying initial conditions results

in two distinct equilibrium states.

While many previous methods simply avoid wrinkles in the captured

data [36, 103, 143], we instead propose a novel objective to handle such

ambiguities and are able to process coupled-parameter captures, which in

turn allows for simpler and more affordable capture pipelines.

As outlined above, the evaluation of the objective in Eq. (5.8) results in a
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very different value for both equilibrium states in Figure 5.4 when choosing s

to be a stacked locator of vertex positions p, although both target swatches

are generated with the same material properties. In general, positional

loss encoding is sensitive to small differences in the captured cloth. Thus,

we developed an objective function that reports a similar error for wrinkle

patterns generated by the same material. We evaluate the following shape

descriptors:

spos(p) = p,

senergy(p) = Utriangle(p) +Ubend(p),

sstrain(p) = Ctriangle(p) +Cbend(p),

sFFT(p) = FFT(p),

(5.9)

where U is either a triangle or bending energy and C is the strain as defined

in Section 5.3.3. The position descriptor spos represents the swatch shape

in terms of vertex positions, leading to evaluating the absolute position of

wrinkles. In contrast, senergy and sstrain measure the per-element energies

and strain, respectively, which determine how much the cloth is stretched.

They differ in U usually being a squared strain scaled by the material pa-

rameters. This implies that starget depends on γ, which complicates the

computation of the corresponding derivatives. The finite Fourier transform

(FFT) descriptor sFFT applies the normalized 2D FFT to grid vertices. The

normalization removes phase information, leading to small metric differences

when comparing distinct wrinkle phases and larger discrepancies for varying

wrinkle amplitude or frequency.

Our experiments show that the energy and strain descriptors senergy and

sstrain work well when bifurcations are symmetric as in Figure 5.4. However,

for fine wrinkles as in Figure 5.5, only the FFT descriptor sFFT performs

robustly as we elaborate in the next section.

5.4 Evaluation

In this work, we use the centimetre-gram-second (CGS) system of units for

material parameters. While our optimization results in optimal parameters
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γ as defined in Eq. (5.7), we often report the traditional, more intuitive pa-

rameters Eu, Ev, µ, ν instead of C00, C11, C01, and C22 as defined in Eq. (5.6).

In the following sections, we use γ to represent parameters in both forms

depending on context.

A popular experiment for cloth is the picture frame shear. Here, a square

piece of cloth is fixed on all sides onto a rigid “picture frame”, which is then

deformed at the hinges. For validation purposes, we hand-pick fictional

properties for three synthetic materials, see Table 5.1 (top), that we call

cotton, denim, and silk as they produce visually similar shapes to these

fabrics. We then simulate a picture frame experiment using two different

initial conditions for all three materials. For this experiment we use a square

cloth swatch with a side length of 15 cm. The two initial conditions are per-

turbed vertex positions and a flat alignment of all vertices. The simulations

with varying initial conditions converge to significantly different equilibrium

states for each material as shown in Figure 5.6, which demonstrates the

ambiguity mentioned in Section 5.3.4.

5.4.1 Choice of objective function

To evaluate the effectiveness of the proposed shape descriptors s, we gener-

ate a synthetic cotton picture frame experiment with our XPBD simulator

and γcotton, see target shape in Figure 5.5. Starting with perturbed param-

eters γinitial,c from Table 5.1 (middle), we optimize for material parameters

with each shape descriptor from Eq. (5.9). We then run four simulations

with the found parameter sets, all initialized to the target cloth shape. As

demonstrated in Figure 5.5, the optimization using the parameters retrieved

through the FFT descriptor sFFT converges to the exact target cloth shape

while senergy and sstrain produce the largest differences to the target.

Furthermore, we assess the ability of spos and sFFT to discriminate be-

tween different materials. Thereby, we evaluate both descriptors on simu-

lations of the same material with varying initial conditions and on simula-

tions of different materials. We want the descriptors to be similar for the

first case, but divergent for the second. We evaluate cloth simulations for
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three materials m ∈ {cotton, denim, silk} with two varying initial condi-

tions {pinitial1,pinitial2} on a cloth swatch as described in Figure 5.6. The

descriptor difference ∆s within one material, here for FFT, is

∆sFFT,m = ∥sFFT,m(pinitial1)− sFFT,m(pinitial2)∥2.

The delta across two different materials m, m2 with

m2 ∈ {{cotton, denim, silk} \m} is defined as

∆sFFT,m,m2,i,j = ∥sFFT,m(pi)− sFFT,m2(pj)∥2,

with i, j ∈ {initial1, initial2}. Since these absolute values are not neces-

sarily comparable across different descriptors, we instead compare relative

differences:

∆ŝFFT,m,m2,i,j = ∆sFFT,m,m2,i,j −∆sFFT,m,

where positive values indicate that the descriptor reports larger shape differ-

ences in different materials than varying cloth configurations for one mate-

rial, as desired. Withm2 and i, j, we obtain eight instances of ∆ŝFFT,m,m2,i,j

for each material m. Figure 5.7 shows that the FFT shape descriptor cor-

rectly produces higher differences for varying materials compared to distinct

configurations of the same material. Hence, we choose the FFT shape de-

scriptor for our objective function.

5.4.2 Validation

To analyze the accuracy of our novel parameter estimation, we generate four

synthetic cotton simulations with our XPBD simulator: two picture frame

deformations and two stretch experiments as visualized in Figure 5.9. To

allow for precise comparison of the retrieved and target parameter sets, we

use the same XPBD simulator as we employ in the optimization. Starting

with the same perturbed parameter set γinitial,c as in the previous section,

our optimizer recovers the target parameters very well after 13 iterations as

shown in Table 5.1 (bottom) – although only four target cloth shapes are
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Figure 5.5: Shape descriptor evaluation. Target cloth is simulated
with XPBD (left) followed by optimization results for each de-
scriptor (right). Euclidean vertex distances to the target are
color-coded with a maximum of 1.8 mm.
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Figure 5.6: Distinct equilibrium states for the same material. Two
simulations for each material with different initial conditions:
perturbed vertices (left), flat configuration (middle), and color-
coded Euclidean distance between both meshes in red (right),
with a maximum distance of 4.3 mm.

used. Remarkably, the bending parameter is recovered within a 4% error

in spite of there being no explicit bending examples in the target set. The

membrane parameters are recovered within 0.5% error.

In Figure 5.8 we further compare the shapes of unseen cloth configura-

tions re-simulated with our retrieved parameter set γFFT,c to target simula-

tions created with γcotton. The error in the recovered parameters causes a

difference in vertex positions below 0.28 mm, which is largely imperceptible.
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Figure 5.7: Relative metric differences. Values of ∆ŝpos,m,m2,i,j (left)
and ∆ŝFFT,m,m2,i,j (right) where m is the x-axis: spos doesn’t
necessarily produce higher metric differences across materials
compared to varying cloth configurations for the same material,
as shown by the negative and close-to-zero values (left), while
sFFT does as observed in the mostly positive values (right).

5.5 Results

Synthetic Experiments We show that our method is capable of reproduc-

ing cloth simulations from third-party software. First, we generate a set of

square swatch targets in Houdini [125] with different material presets; the

targets for silk are depicted in Figure 5.10. Then, we estimate the bending

parameter b using the bending scenarios of Figure 5.10 (right). The mem-

brane parameters (C00, C11, C01, C22) are estimated together in a separate

pass by pulling the corners of the suspended cloth swatch as in Figure 5.10

(left). This process is repeated thrice to ensure that the coupling between

bending and membrane stiffnesses is not lost. Furthermore, to avoid getting

stuck in local minima, we run the same optimization from three different

randomized starting points.
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Figure 5.8: Re-simulation of various cloth configurations with γFFT,c

estimated from XPBD targets with γcotton. The vertex displace-
ment error is color-coded in red, with a small maximum error
of 0.28 mm. The second and last columns are targets while the
rest are unseen by the optimization.

Figure 5.9: XPBD validation targets.

This decoupling technique produces a lower objective, i.e., a better fit,

compared to optimizing all parameters at once. In the future, we aim to

further eliminate the need for separate passes for bending and membrane

parameters to produce a more streamlined pipeline. The comparison to

Houdini silk targets is illustrated in Figure 5.11. For all deformations apart

from the second column, the local vertex displacement is below 2.4 mm.

In the second column, the error is clustered at large strain regions, which

indicates that our StVK model deviates from Houdini’s material model for

large strain deformations.
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The retrieved parameters are listed in Table 5.2. By optimizing for

these parameters, we avoid manual hand-picking of material parameters as

in Section 5.4, but instead, are able to reproduce the cloth behaviour of

the physically more accurate and computationally more expensive Houdini

FEM simulator as demonstrated in Figure 5.12. Here, we re-simulate the

Houdini experiment with our XPBD simulator by using the same initial

and boundary conditions as in Houdini. We thereby demonstrate that our

pipeline is capable of effectively reproducing the aesthetics of different cloth

materials generated by third-party simulators.

Real-world experiments. With real-world captures of cloth subject to var-

ious force applications and deformations, we generate six targets each for

three different materials as shown in Figure 5.13 using a 9.6 cm cloth swatch.

The first two targets are generated by applying a 200 g weight on opposing

sides of the cloth using wide paper clamps as shown in Figure 5.2 (right).

The third target is generated by applying a 200 g weight on all corners while

the fourth is created by applying 20 g at two diagonally opposite corners

and 100 g on the remaining corners. The last two targets are generated by

letting the cloth drape from a horizontal ledge.

We optimize for the parameters of each material, which are shown in Ta-

ble 5.3. Then, we re-simulate the target with the estimated parameters by

setting the initial vertex positions to the target shapes, see Figure 5.14. Our

results demonstrate that our method is able to closely match the captured

targets within 3.7 mm of maximum vertex displacement. Our optimization

correctly determines higher Young’s moduli for a stiff material like denim

Figure 5.10: Synthetic silk targets generated with Houdini, used for
estimating membrane stiffnesses (left) and bending stiffnesses
(right).
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Figure 5.11: Re-simulation with the estimation of Houdini’s silk pre-
set. The square cloth swatch is re-simulated using the esti-
mated parameters using our XPBD solver. The set of targets
used during optimization (training set) includes configurations
from columns 2, 3 and 7. The vertex displacement error is
color-coded in red with a maximum set to 2 mm. In the sec-
ond column, errors are clustered on the large stretch areas with
a maximum of 6 mm while it is below 2.4 mm in the remaining
columns.

Figure 5.12: Aesthetic evaluation. By twisting a piece of cloth, unseen
by optimization, we demonstrate that distinct wrinkle patterns
generated by Houdini’s FEM simulator are reproduced using
our XPBD simulator with optimized material parameters.
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Figure 5.13: Real-world targets. A piece of denim (top), cotton (mid-
dle), and polyester (bottom) is deformed in various configu-
rations. The target meshes are generated through template
registration as described in Section 5.3.2.

Figure 5.14: Real-world results. Denim (top), cotton (middle), and
polyester (bottom) cloth is simulated with our estimated pa-
rameters. The vertex position error to the targets in Fig-
ure 5.13 is colored in red with a maximum of 3.7 mm.

and lower for the softer polyester material, as well as a larger bending stiff-

ness in denim compared to cotton and polyester.

Note that the stiffness parameters in Table 5.3 are lower than in Ta-

ble 5.2, since the forces applied on the boundary are smaller in the real-

world case, e.g., 0.2 Mdyn vs. 3 Mdyn, which leads to a similar amount

of strain. As our method aims at small strain deformations, we expect to
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Figure 5.15: Outfit simulation: a denim overall and cotton top (left)
and a polyester soccer outfit (right).

see lower stiffness estimates. However, we plan to extend our analysis to

more sophisticated large strain models, and experiment with larger forces

for captured data in the future.

To further validate that our results produce the desired look, we simulate

full outfits using the estimated parameters in Figure 5.15.

5.6 Limitations and future work

We presented a novel approach to cloth captures and optimization that sim-

plifies the inverse design problem of parameter estimation. Despite improv-

ing robustness and simplicity over prior work, several limitations remain.

For instance, the accuracy of our template registration technique is limited

to the resolution of the stamped pattern. Additionally, as is common with

non-linear optimization, our system is sensitive to objective scaling even

with our FFT metric, and heuristics are required to establish a reasonable

scaling between the shape descriptor metric and the force metric.

As part of future work, we aim to implement the method on GPUs to

optimally leverage available compute resources and to greatly speed up op-

timization time. Additionally, we intend to extend our research to different

material models such as piece-wise constant stiffnesses for a piece-wise linear

elastic model [143] or the stable neo-Hookean model for volumetric simula-
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tions [94].

Our method uses a constant simulation time to reach equilibrium. While

time to equilibrium is generally short close to the optimum, we can expect it

to increase when initial parameters are chosen poorly. We plan to use adap-

tive simulation times in the future, which will further improve the robustness

of our estimates.

5.7 Conclusion

We have presented a novel, simple pipeline to capture, register, and opti-

mize for cloth material parameters using a simulation engine. Our proposed

pipeline consists of three separate stages that can be improved upon individ-

ually. We proposed a novel metric that enables us to capture coupled cloth

shearing, stretching, and bending effects, which in turn allows for cheaper

and easier capture setups. Our material parameters are not limited to the

XPBD framework and can be reused with different simulation techniques

that employ the same material model.

This work provided the invaluable insight of the importance of efficiency

for forward simulation. Even without back-propagation [42, 85], we found

that typical optimization workloads can take weeks on CPU. However, hav-

ing a differentiable frictional contact model can maintain the second-order

convergence guarantees during parameter optimization.
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Eu Ev µ ν b

γcotton 1.0e5 2.8e5 4.0e4 0.4 50
γdenim 5.0e5 7.0e5 2.0e4 0.45 200
γsilk 2.0e5 3.0e5 1.5e4 0.35 10

γinitial,c 2.0e5 1.8e5 5.0e4 0.3 10

γFFT,c 9.98e4 2.79e5 3.98e4 0.40 51.96

Table 5.1: Material properties for validation with XPBD. Hand-picked
properties for three synthetic materials (top), perturbed initial
conditions for cotton (middle), and the recovered parameter set
γFFT,c (bottom) with inputs as in Figure 5.9.

Material (ρ in g/cm2) Eu Ev µ ν b

Denim (0.0324) 34182 33735 5592 0.2609 11.0
Cotton (0.0224) 30823 30266 4971 0.3058 1.19

Silk (0.0187) 7492 7436 1193 0.03543 0.100

Table 5.2: Estimation of material parameters for Houdini’s FEM
cloth solver.

Material (ρ in g/cm2) Eu Ev µ ν b

Denim (0.0324) 3793 20590 6968 0.4286 28.5
Cotton (0.0224) 1840 2019 6538 0.4308 8.99

Polyester (0.0187) 1028 3271 9171 0.2731 2.35

Table 5.3: Estimation of material parameters for real-world targets.
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Chapter 6

Conclusion

This dissertation investigates various limitations of modern methods for sim-

ulating real-world phenomena involving soft interacting objects. Frictional

contact phenomena are particularly difficult to represent in the virtual world.

Contacts between objects are not easily represented digitally. They are of-

ten modelled via constraints that enforce penetration-free states between

discretizations of various elastic media. This makes friction modelling even

more difficult since it further conditions the motion of objects along the

boundary of constraint violation. It is thus unsurprising that performance

bottlenecks and visual artifacts in simulation often occur due to limitations

in friction and contact handling. To this day there are no standard meth-

ods for reliable simulation of friction and contact without compromises on

performance, accuracy or robustness. In this work, we address specific de-

ficiencies in the accuracy of sliding contacts and friction simulation in the

context of elastodynamics.

In Chapter 3, we identify and address a limitation of common contact

handling methods, which use piecewise linear representations to model the

physical surface of touching objects. When modelling contact between or-

ganic objects like plants, animals, or clothing, piecewise linear representa-

tions form a poor approximation to the true surface. In sliding contacts,

piecewise linear surface models can mutually interlock, creating artificial

spikes in friction that otherwise may not exist if the surfaces were refined.
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This can cause unexpected behaviour in simulations as meshes are refined

for higher fidelity or coarsened for better performance. We address this issue

by modelling contact using smooth deformable implicit surfaces, which are

created from oriented point clouds coarsely sampling simulated meshes. Our

method resolves artificial friction effects and unexpected change in behaviour

due to mesh refinement or coarsening. Contact resolution using implicit sur-

faces offers many advantages. For one, it can be applied to meshless methods

or even LiDAR point clouds [98]. Other applications can include contact in

fluid simulation where frequent topology changes are automatically handled

by implicit surface representations.

In Chapter 4, we address a fundamental issue affecting friction accu-

racy in current state-of-the-art methods for modelling frictional contacts. It

is particularly difficult to accurately model the transition between sliding

and sticking contacts. Traditional methods represent this behaviour via ex-

plicit bimodal models, where sticking contacts follow one set of equations,

and sliding contacts are resolved via another. The transition is then in-

herently non-differentiable. This non-smoothness can be a strain on the

robustness and performance of numerical methods, and it can make the

simulation impractical to use for inverse problems. Modern methods resolve

these issues via smooth approximations for these transitions at the cost of

accuracy, where contacting objects at rest will slide, even when they should

be sticking. In this work we show that smooth approximations can be made

substantially more accurate when friction is handled implicitly — mean-

ing that friction forces are resolved simultaneously with all other internal

forces involved in the simulation. Furthermore, we take advantage of the

smoothness of contact surfaces from the methods developed in Chapter 3

to develop a simple and fully differentiable formulation. We further showed

how our method can reproduce volume preservation phenomena using soft

constraints, maintaining differentiability of the pipeline.

Gaining popularity in computer graphics, differentiable simulation is a

powerful tool for automating simulation pipelines. It liberates artists from

arduously picking simulator parameters by hand, and closing the sim-to-real

gap between captured real-world phenomena and simulation results. Differ-
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entiable simulation unlocks so many applications, that simulators are often

viewed merely as tools or a means to acquire plausible estimates of real-world

behaviour. Due to a myriad of numerical difficulties like artificial stiffening,

damping and other subtle modelling limitations, simulations are never true

to real-world behaviour unless said behaviour is carefully controlled. How-

ever, simulations are controlled via material models and parameters, which

can be tweaked to offset inconsistencies with real-world behaviour. If au-

tomated, tweaking simulation parameters has the potential to be powerful

enough to significantly improve simulation performance by choosing simpler

material models and simultaneously be more accurate since results can be

effectively adjusted to match real-world captures.

In Chapter 5, we address a specific issue when matching fabric simula-

tions to real-world captures in a differentiable simulation pipeline. Our aim

is to automatically determine stretching and bending stiffnesses involved in

driving cloth simulations, from real-world captured cloth. When matching

real-world scans to simulated cloth it is essential to define a measure of how

closely the two match. Most commonly, researchers use vertex based or

locator based measures where distances of corresponding locations on the

simulated mesh and the scan are measured, then an aggregate is computed.

This often works well, especially for volumetric objects, however, matching

cloth poses an interesting limitation. Assuming this similarity measure, we

found that cloth simulation can exhibit vastly different equilibrium states

for the same or slightly perturbed material properties or initial conditions.

This is especially true in the presence of dissipative forces like friction, air

drag or damping. To fix this issue, we developed an alternative measure

to compare the shape of cloth patches in frequency space. This allowed for

greater flexibility in the types of deformations we could perform to deter-

mine material parameters of real pieces of cloth. This allows us to build a

more robust method for capturing real-world cloth behaviour using a simple

and highly efficient simulation method.
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6.1 Limitations and future work

This section summarizes some important limitations in the methods pre-

sented and proposes potential solutions and avenues for future work.

Self-contact. Our contact model using implicit surfaces does not support

self-contact. While this model may work for many applications, it lacks

generality to handle common scenarios like animation driven inputs where

body parts may temporarily self-intersect. Currently, the most promising

solution here is to evaluate the implicit surface in rest configuration.

Global convergence of nonlinear equations. Solving for fully implicit fric-

tional contact forces in Chapter 4 comes with a fundamental trade-off. The

lagged friction method benefits from good convergence guarantees of local

optimization. On the other hand, our method relies on root-finding, which

is more general but more difficult to solve. Although continuation or ho-

motopy methods can address this shortcoming, convergence guarantees are

not regained. However, it is not inconceivable that a cleverly designed merit

function could avoid local minima.

Performance of friction solves. Large coefficients of friction µ or small fric-

tion error ϵ can produce particularly stiff ODEs, which can substantially

affect performance. One potential approach here is to adaptively decrease

ϵ to a desired accuracy. This could help guide Newton iterations towards a

solution more quickly.

Smooth frictional contact method for XPBD. One advantage of our friction

formulation in Chapter 4 is that it is simple and does not require a special

algorithm for resolving frictional contacts. Since frictional contact is part of

the equations of motion, it can be directly solved for in XPBD. However, it

is unclear if such a system would produce practical results. This is in part

because large friction forces can produce very stiff ODEs, which are difficult

to solve even with Newton solvers as we have demonstrated in Chapter 4.
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Differentiable simulation. Our method uses the forward simulation to com-

pute derivatives with respect to all material parameters. This is efficient,

however it can become impractical with large numbers of parameters, or

when optimized parameters are unknown prior to generating the forward

simulation. Modern differentiable simulation pipelines are built around the

adjoint method [85], which back-propagate positional derivatives to allow

for a more flexible pipeline. This can also be applied in XPBD simulation.

In this dissertation, we have demonstrated and addressed a number of

issues in current methods for simulating elastodynamic systems and their

ability to match real-world behaviour. Along the way, we have uncovered

fruitful new areas of research and hinted at promising future directions. The

problems and methods presented here aim to capture a small but modern

snapshot of research bringing future virtual worlds closer to reality.
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Appendix A

Smooth versus non-smooth

implicit contact

In this section we motivate the use of a custom smooth implicit surface over

the standard signed distance field for use in constrained optimization for

contact resolution as presented in Section 3.4.

Consider a crude simplification of the contact problem in the context of

polygonal contact, where a single vertex on a larger mesh at position x0 is

deformed to lay in a crevice between two polygons. Suppose that we use the

signed distance field (SDF) of the polygonal surface as the constraint in our

elasticity minimization problem for contact resolution. In Figure A.1a we

illustrate a scenario where a non-smooth implicit surface causes gradient-

based optimizers to diverge. In Figure A.1b, we illustrate the same simpli-

fied example, but with a smooth surface approximation at the cusp. Here,

the derivative is well-defined at the minimum, which allows gradient-based

methods to converge. Recent work has improved signed distance contact

handling by smoothing the SDF specifically for edge-edge contact pairs [84].

In our work, we use a smoothing of the entire surface using MLS, rather than

employing local smoothing at polygon cusps. Note that this issue affects any

line-search method, which uses the constraint Jacobian for computing the

descent direction. In general, non-smoothness cannot be simply removed by

splitting the contact polygonal constraints into multiple linear constraints,
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(a) Non-smooth contact. (b) Smoothed contact.

Figure A.1: This illustration depicts the initial configuration of sim-
plification for a common contact scenario. A single vertex
marked by the blue dot is placed inside a quadratic poten-
tial (with a minimum is at (0,-1)), and subjected to lay in the
blue area bordered by the contact surface in black. In (a),
the solution (final vertex position) to the elasticity problem
subject to contact constraints lies at a non-differentiable point
on the implicit contact surface, which causes typical gradient-
based optimizers to diverge. In (b), the contact surface is
smoothed producing a differentiable constraint function which
allows gradient-based iterations to converge at the minimum
located at the bottom of the smoothed cusp. The color bar
on the side of each plot indicates the iteration number at each
point on the path taken by the optimizer.

because the feasible region is non-convex.
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Appendix B

Cloth on cylinder stopping

friction

To compute the correct stopping coefficient for the cloth on cylinder exam-

ple, we will start with a derivation for the capstan equation:

dT

dθ
= µT

where T is the tension on the cloth along each point of contact with the

cylinder and θ is the angle of the contact point from the vertical as shown

in Figure B.1. When the tension caused by the weight of the cloth at every

contact point is included, we get

dT

dθ
= µT + µRb cos(θ)−Rb sin(θ) (B.1)

where the additional two terms describe the contribution of the normal and

tangential components of the gravitational pull at every contact point. Here

R is the radius of the cylinder, and b = ρgw where ρ is the cloth mass

density, g is gravitational acceleration and w is the width of the cloth (size

along the length of the cylinder). The general solution to Eq. (B.1) is

T (θ) = Ceθµ +
−Rbµ2 cos(θ) + 2Rbµ sin(θ) +Rb cos(θ)

µ2 + 1
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where C is the constant of integration. Since we know the weight of the

cloth at each end, T (−π
2 ) and T (

π
2 ), we can determine C to be

C = − b(µR− ℓ)
2 cosh(πµ2 )

where ℓ is the total length of the cloth. Now by equating the weight of the

cloth at one end with T (−π
2 ), we will find the length of the hanging part to

be

ℓ−π/2 = −
(µR− ℓ)e−

πµ
2

2 cosh(πµ2 )
− 2Rµ

µ2 + 1
(B.2)

We can now plug in all known lengths and solve for µ. For the example in

Figure 3.5d and assuming that ℓ−π/2 represents the shorter end, we have

ℓ−π/2 = 0.8, ℓ = 4, R =
1.6

π
(B.3)

where all values are given in meters. Finally, the root of Eq. (B.2) given

Eqs. (B.3) is

µ ≈ 0.14015161654962588...
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θR •T (θ)

T (−π
2 ) ↓ ↓ T (π2 )

Figure B.1: Cloth on cylinder. This diagram shows a cross-section
of our cloth on cylinder configuration for the capstan equation
derived in Appendix B. The cloth (in blue) rests on the cylinder
(in black), which has radius R. T (θ) is the tension on the cloth
at each point on the top semi-circle.

146


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	Acknowledgements
	Dedication
	Dedication
	1 Introduction
	1.1 Overview

	2 Background
	2.1 Generalized coordinates
	2.2 Equations of Motion
	2.3 Elasticity and Damping
	2.4 Contact mechanics
	2.5 Time integration
	2.5.1 Backward Euler
	2.5.2 Backward differentiation formula
	2.5.3 Trapezoidal rule
	2.5.4 tr-bdf2
	2.5.5 Singly diagonal implicit Runge-Kutta
	2.5.6 Summary


	3 Frictional contact on smooth elastic solids
	3.1 Introduction
	3.2 Related work
	3.2.1 Implicit surfaces
	3.2.2 Frictional contact
	3.2.3 Friction models

	3.3 Formulation
	3.3.1 Nonlinear equations as an optimization problem
	3.3.2 Time splitting
	3.3.3 Force forwarding

	3.4 Implicit surfaces
	3.4.1 Local moving least squares potential

	3.5 Frictional contact
	3.5.1 Contact space
	3.5.2 Contact
	3.5.3 Friction
	3.5.4 Frictional contact solutions

	3.6 Results
	3.7 Discussion and conclusions
	3.7.1 Limitations
	3.7.2 Discussion
	3.7.3 Conclusion


	4 Nonlinear smooth dynamics
	4.1 Introduction
	4.2 Related work.
	4.3 Formulation
	4.3.1 Contact
	4.3.2 Friction
	4.3.3 Volume change penalty

	4.4 Numerical Methods
	4.4.1 Damped Newton
	4.4.2 Inexact damped Newton
	4.4.3 Contact
	4.4.4 Compatibility with lagged friction models

	4.5 2D Analysis
	4.5.1 Jacobian conditioning
	4.5.2 Stability

	4.6 Results
	4.6.1 Friction accuracy
	4.6.2 Performance
	4.6.3 Real world phenomena
	4.6.4 Tennis ball
	4.6.5 Tire wrinkling

	4.7 Conclusions and limitations

	5 Cloth parameter estimation
	5.1 Introduction
	5.2 Related work
	5.3 Method
	5.3.1 Capture system
	5.3.2 Template registration
	5.3.3 Simulation
	5.3.4 Estimating elastic material parameters

	5.4 Evaluation
	5.4.1 Choice of objective function
	5.4.2 Validation

	5.5 Results
	5.6 Limitations and future work
	5.7 Conclusion

	6 Conclusion
	6.1 Limitations and future work

	Bibliography
	A Smooth versus non-smooth implicit contact
	B Cloth on cylinder stopping friction

